Posted by: Matthew Danford 11. November 2015

Wisdom from the Moldmaking Sector

It’s great to be back at Modern Machine Shop!

The last time my byline appeared in this magazine was late 2013, right before I transitioned to our sister publication, MoldMaking Technology. Two years of focusing solely on the needs, ambitions, problems and success stories of plastic injection moldmakers certainly taught me a lot about that industry. Yet, at the same time, on some level, manufacturing is manufacturing. And I have no doubt that much of what I learned will come in handy in my efforts to provide MMS readers with new insights for machining parts and running businesses. Here are a few examples of lessons from the toolmaking sector that can likely be applied to other industries as well: 

- A high-mix, low-volume niche doesn’t necessarily preclude standardization and automation. Indeed, many mold manufacturers had the same answer when I asked about the most significant changes in their business during the past decade or so. That is, the industry has transitioned from craft to science—or, as many shop leaders like to put it, from “mold making to mold manufacturing.”

The idea  is to make the complex process of building a mold more systematic—more like an assembly line—by reducing it to a series of simpler steps that are honed and improved through repetition. Ideally, designs are 100-percent complete prior to any work, and each department executes its role in strict adherence to the CAD model and preplanned manufacturing strategy, even down to fits and clearances. Primarily by reducing variation, the “mold manufacturing” approach improves efficiency, quality and process predictability while facilitating the use of pallet changers, robotics and other automation. This article on Graphic Tool covers the basics of what that approach entails.

Implementing standardized workholding is a critical early step toward a more process-driven, assembly-line-like approach to mold production. This shot (courtesy of B.A. Die Mold)  depicts copper electrodes mounted in Erowa fixtures.  

- Little things count. When every job involves building what is essentially a one-off machine, even the most seemingly minor inefficiencies can have an outsized impact. This piece covers a few of the strategies that A1 Tool Corp. uses to facilitate attention to detail, including the expansion of the assembly-line-like approach described above to cover more than just core metal-cutting operations.

At A1, cutting baffles on a punch press has proven more versatile and more efficient than the previous process of cutting the stock in two operations on a bandsaw and knee mill. Improvement ideas like this are often a result of departmentalizing the shop and specializing the staff. (Photo courtesy of Creative Technology Corp.)

- It’s all about the people. Adapting to new realities involves transitioning more than just processes and technology. The role of people changes as well, and that can sometimes be difficult. That’s why it’s important to show employees that they’re viewed as more than just numbers on a spreadsheet. A1, for example, has spent more than $1 million on facility upgrades, such as a new workout room, that have no direct impact on the moldmaking process. MMT’s 2015 Leadtime Leader: Honorable Mention award winner, Dynamic Tool & Design, has adopted a particularly interesting (and easy to implement) award system for showing appreciation for its most valuable resource, not to mention an unconventional ownership structure that ensures employees’ stake in the business goes beyond just a regular paycheck. 

- Education is key. Workforce development is critical for all manufacturing, but the level of problem-solving and critical thinking involved in designing and manufacturing a functioning plastic injection mold has this sector particularly concerned. Many conduct regular tours, donate equipment to local high schools and community colleges, advise those institutions on curriculum, and participate in events like job fairs and the annual Manufacturing Day. There’s also a lot of interest in apprenticeship programs. In North Carolina, one model that seems to be catching on is based heavily on approaches taken by the Germans and Swiss since the middle ages.

Not all skills can be formally taught, and mold manufacturers require a broader set of knowledge than just running machines. Janler Corp. makes a point to ensure its youngest toolmakers spend enough supervised, hands-on time performing preventive maintenance to pick up on things that have become second nature for their seasoned mentors.  ​

- We’re all in it together. Moldmakers are a tight-knit group. Anyone who doubts that need only attend any event put on by the American Mold Builders’ Association (AMBA), which offers everything from networking opportunities to skills certification programs to formal shop tours where moldmakers invite peers to critique the finer points of their operations. I’ve had more than a few shop leaders express the sentiment without a vibrant community of North American toolmakers, OEMs will turn elsewhere for their molds. There’s a sense of solidarity there, a sense of “us versus them,” and a recognition that a shop’s individual reputation can be heavily impacted, fairly or not, by that of its peers. In my view, the same is true of the industry as a whole. 

Posted by: Peter Zelinski 10. November 2015

Methods Event Debuts Additive Manufacturing Offerings

Methods' Event debuts additive

The recent Methods open house and technical seminar event included the public premiere of its new partnership with 3D Systems. Seen here at the Methods event (the tallest machine just past the crowd) is the 3D Systems Prox300 machine for production 3D printing of dense metal parts and a selection of parts grown on the machine.

Methods Machine Tools’ “Techfest 2015” event was the public premiere of the company’s newly signed partnership with additive manufacturing technology supplier 3D Systems. Alongside its machine tool offerings from brands such as Nakamura-Tome, Kiwa, Yasda, Feeler, FANUC, Hanwa and Current EDM, Methods will now also supply 3D Systems equipment for additively producing polymer, ceramic or dense metal industrial parts.

Significantly, Methods says it will also help companies succeed with these additive technologies. In the machine tool sphere, the company aims to be a “solution” provider rather than solely an equipment provider, and it is known for turnkey installation of engineered systems combining machining technology with support equipment such as automation. Company President and CEO Bryon Deysher says the company will bring the same kind of engineering support to its sales of additive manufacturing technology.

“We are all in,” he said, describing his company’s commitment to additive manufacturing in remarks to an audience of attendees to the Techfest event. One of the challenges of additive manufacturing is that large companies can afford to invest in the learning curve necessary to succeed with additive, but small to midsize manufacturers struggle with this. He says Methods’ aim will be to fill this very gap, by staffing up with technical personnel focused on additive manufacturing who can guide customers along the way to successfully and efficiently applying this technology to industrial production.

Growing that staff will be part of Methods’ long-term investment in advancing additive technology, he says. He expects manufacturers will evaluate additive with a similarly long view. “I believe, if you are not thinking about this now, you’ll wish you were in two years,” he said at the event.

One of the company’s new hires is Benjamin Fisk. Until a couple of months ago, Fisk was a manufacturing technology manager overseeing AM efforts at Pratt & Whitney. Now, he has joined Methods as the general manager of what will eventually become a nationwide additive manufacturing team for the company, ready to support the AM efforts of companies much smaller and less well known than his former employer.

For these small and midsize manufacturers, he says, there are significant challenges today that inhibit additive manufacturing gaining ground. The burden of AM development and integration generally falls on users, he says. When it comes to development, a general lack of process knowledge leads to significant developmental costs. And when it comes integration, this effort has to be inclusive of a complete process from design through inspection.

“You can’t think about 3D printing as just a standalone process,” Fisk said.

Methods can help with this entire range of challenges, he says. The company can engineer a system for additive manufacturing that includes postprocessing equipment and other support capabilities. And it can assist customers to refine and prove out not just the additive portion of the process, but instead the entire part-making sequence including the additive step.

The Techfest event showed various equipment likely to be included in processes such as this. In a conversation with Fisk, I asked him to indicate machine tools at the event likely to be useful for processing 3D-printed metal parts. He pointed to wire EDM first, as this is frequently the best method for removing printed parts from their build platform. Next in the sequence might be a small five-axis machining center, he said—that is, a machine able to make the necessary finishing passes for the kind of geometrically intricate workpiece that additive manufacturing is able to produce.

EDM machines at Methods' event

The integration with machining is vital to success of additive manufacturing, because production AM parts almost always require machining for critical features and tolerances. Methods says an additive part-making process might include post-processing capabilities such as wire EDM (left) for cutting the part from the build platform as well as five-axis machining (right) for finishing complex forms. The company sees its ability to provide all of these capabilities—additive and subtractive—as being one of its important strengths in advancing AM.

Another capability seen at the event was robotic loading of both standalone and multiple machines. Integrating robots is a common part of Methods’ turnkey engineering. The company’s robotic installations to date have been for subtractive machine tools, but now this same kind of integration of automation might soon be applied to production processes involving additive manufacturing as well.

Posted by: Derek Korn 9. November 2015

Would You Rather Have a Paper Print or a 3D-Printed Prototype?

Here are two examples of complex custom tool concepts that Quinn Saw can print and provide to customers so they can more easily comprehend the overall design concept compared to basic illustrations.

Say you need a custom cutting tool that’s likely to cost you a few grand. Would you rather the cutting tool manufacturer you’re considering provide you with a CAD model or printout of the design or, better yet, a 3D-printed prototype of it?

During a recent open house at Hydromat, I got the chance to chat with Troy Frame, product development manager at W.D. Quinn Saw Co., who talked about the value in providing customers with prototypes of custom tools printed from its Formlabs SLA desktop 3D printer.

Started in 1903, Quinn Saw is a single-family-owned business that’s now into its fifth generation. Bill and Joe Zickel are the current owner-operators (4th generation). The company’s core business has always been reconditioning saw blades and manufacturing new ones, but it has since branched out into custom tooling with Troy as the lead designer.

Troy actually worked for Hydromat from 1997 to 2007 as a tooling engineer, engaging with Quinn Saw (Hydromat’s primary blade supplier for its rotary transfer machines) on many projects to improve the barstock sawing process using HSS and carbide-tipped blades. After joining Quinn Saw in 2007, Troy started developing custom tools, such as the printed prototypes shown above, for unique customer applications.

So why the 3D printer for prototypes? Troy says one reason is that his tooling designs often have intricate features and details that are difficult for many people to fully understand and appreciate just looking at paper illustrations. Plus, the people making the purchasing decisions often are not as familiar with the project as their engineering staff, so the printed models enable the decision makers to have something really close to the actual tool in hand, making it easier to comprehend the overall concept.

But another reason had to do with preventing possible interferences. He points to a tool that took 8 weeks to manufacture. Although the customer was happy with how it looked, the tool ultimately didn’t fit into the required space due to an interference with another device in the tight machine environment. This required rushing the tool back and forth between parties for revisions, which was expensive, but Troy notes the biggest impact was the unexpected delay and black eye for providing a tool that was not functional upon receiving it. After resolving the issues and providing a successful tool, Quinn Saw management met to determine how to prevent this from happening again. The idea of using a 3D printer for prototypes was brought up, so Dan Zickel (of the company’s fifth generation) was tasked with sorting through all of the available 3D printer types and options to determine what model was most suitable and cost effective for its needs. After significant reviews of the vast array of machine types, sizes and cost, Dan narrowed it down to the Formlabs Form 1+, which it purchased this past February. This printer offered a suitable printing envelope with a very reasonable cost as well as high printing definition.  

Quinn Saw chose this Formlabs Form 1+ SLA 3D printer because it offered a suitable printing envelope, a very reasonable cost and high printing definition.  

The machine was purchased just before this year’s Precision Machining Technology Show (PMTS) in Columbus, Ohio. This enabled Troy to print and offer models of concepts to show attendees rather than just pictures. Plus, having high-cost actual tooling on a show display table typically isn’t practical or cost effective unless you have a guaranteed avenue in which to sell it afterwards. The 3D printer is also used to scale up small tool features (see the photo below) that would normally require viewing through a magnifying or inspection device, which sometimes isn’t practical at a trade show or in front of a customer.

The company’s 3D printer is also used to scale up small tool features that would otherwise require a magnifying or inspection device to see.

The company sees value in using its 3D printer in other ways, too. For example, Troy says coolant delivery has been a problem for one of Quinn Saw’s grinding machines that has an articulating head. The company is considering printing a new guard with internal coolant ports. Although this design would be costly and impractical to produce via conventional machining, the 3D printer could produce the complex part at little expense. Then after experimenting with the printed guard on the grinding machine, it’d be easy to tweak the design if necessary and simply print another to try.

Troy cautions that while 3D printing technology is helpful, it’s not perfect. Quinn Saw’s 3D printer uses support material during printing that basically snaps off after the part is printed, but leaves small imperfections where it was attached. Those must be removed by filing and or sanding. Plus, there is a fair amount of physical cleanup on printed components to make them all fit precisely and look more presentable—parts don’t just emerge from the resin batch complete and perfect. But in his experience, while the technology is still in its infancy, it is evolving rapidly and so are the machines that do the printing.

Posted by: Peter Zelinski 6. November 2015

EDM’s Key Technologies Today

There was a time when EDM machine maker Chmer (Taichung City, Taiwan) might have expected high speed milling to take the place of a significant amount of die sinker EDM work. The company developed a line of high speed milling machines to complement its sinker, wire and holemaking EDM machines in anticipation of this change. But things didn’t work out that way—illustrating, among other things, how difficult it is to predict technology adoption. On a recent trip to Taiwan, I had a chance to speak about this with Chmer Marketing Director Brad Wang.

While the ability to take fast, accurate cuts at high feed rates potentially makes milling a contender for certain complex die/mold forms that sinker EDM is used to produce, EDM is still more efficient for features such as deep cavities, fins and many thin walls. These features occur just often enough that high speed milling has not been able to unseat the established technology to any considerable extent. However, high speed milling has proven popular among Chmer’s customers nevertheless, not as a replacement for EDM but as a complement. The fast, accurate cutting is efficient for roughing complex mold forms before the sinker EDM is used to complete those features that EDM is still the best at finishing.

The technology needs and preferences of customers reveal themselves over time, Mr. Wang says. His hope is for Chmer to continue to adapt. Here are the EDM features and capabilities right now that he sees as becoming increasingly important:

1. Linear Motors. Among each of the company’s EDM types (and its milling machines) are models equipped with linear motors for axis motion. Linear motor machines cost more than machines driven by ballscrews, Mr. Wang says, but these motors save cost through reduced maintenance while improving the accuracy of the machine. Compared to conventional drives, a wire EDM machine with linear motors can generate sharper corners on precise components such as die punches. More, linear motors maintain their accuracy over time. This is not the case with ballscrews, which wear and become less precise over time due to the ongoing surface-to-surface contact.

2. Machine Monitoring. Applications of EDM often involve rows of machines all running largely unattended because the cycles are so long. The unattended nature of the process makes the machines ideal for monitoring systems permitting remote viewing of the current status of the machine as well its performance history over time. Chmer’s in-house control has enabled the company to develop its own remote monitoring system, among other special features. (Read on.)

3. Ease of Use. The in-house control has also enabled Chmer to develop a programming system enabling inexperienced users to employ EDM effectively. An operator can enter the workpiece material and diameter of the wire along with the desired roughness of the machined surface to let the control automatically set the cutting conditions and parameters required.

4. Hole Making. Among the three EDM types, holemaking looks to offer the most potential for future growth, says Mr. Wang, thanks to the long-term likely demand for cooling hole machining in turbine components by the aerospace sector. Key capabilities here include precise CNC interpolation to give small holes with a diffuser (open funnel) form at the mouth, as well as integration with B-axis indexing for the array of angles characteristic of the set of holes in a typical blade.

Chmer’s AD4L is a linear-motor equipped holemaking EDM.

Posted by: Derek Korn 5. November 2015

Integrating Robot Programming into the CNC: One Example

For this demonstration, the robot performed both workpiece pallet changeout and simulated polishing operations of machined parts.

I’ve been aware of the Run MyRobot capability available with Siemens Sinumerik controls for a little while, but I believe the cell below that was in Handtmann’s EMO Milan booth represents the first time I’ve seen a demonstration of the concept using an actual machine tool.

The idea is to provide intuitive robot programming capability at a machine’s CNC via the Sinumerik Operate GUI. In the case of this cell, the execution of the movements of the six-axis Kuka KR 600 Fortec robot (with 600-kg load capacity), provision of robot safety functions and other robot-specific functions are performed by the Kuka KR C4 robot control. However, that control is connected to the Handtmann five-axis HBZ Trunnion 80 machine’s Sinumerik 840D sl  CNC. Therefore, the machine tool operations and robot program can be tracked and controlled on one screen via parallel channels.

The machine tool operations and robot program can be tracked and controlled on one CNC screen via parallel channels (the robot channel is shown here).

For this demonstration, the robot performed both workpiece pallet changeout (using Schunk clamping systems) and simulated polishing operations of machined parts. Of course, the robot can be used to perform a range of secondary operations, including drilling, brushing and deburring, depending on a manufacturer’s needs.

Check out this video that shows the cell at the show.

« Prev | | Next »

Subscribe to these Related
RSS Blog Feeds

Channel Partners
  • Techspex