Mark Albert

Mark Albert is editor-in-chief of Modern Machine Shop Magazine, a position he has held since July 2000. He was associate editor and then executive editor of the magazine in prior years. Mark has been writing about metalworking for more than 30 years. Currently, his favorite topics are lean manufacturing and global competitiveness. Mark’s editorial activities have taken him to numerous countries in Europe and Asia as well as across the United States many times. He is a graduate of the University of Cincinnati (Cincinnati, Ohio) and Indiana University (Bloomington, Indiana).

Posted by: Mark Albert 27. March 2015

Secrets to the Art of Hand Scraping

Watch this video for a demo of the hand scraping process, and find a link below to a white paper on the topic.

Hand scraping of mating surfaces on a machine tool enables the surfaces to be flatter, more accurately aligned, longer wearing and freer to glide across one another. No automated or mechanical operation can match these benefits. Machine builder Okuma has issued a white paper detailing the benefits of hand scraping, at technique it applies to all of its machines.

The company contends that hand scraping maintains high levels of CNC machining accuracy and reduces wear and tear, resulting in a long, stable and productive life for the machine. This manual process ensures that tight tolerances are consistently maintained and that precision CNC machining performance is sustained for years, therefore yielding the lowest cost-per-part, the company says. 

In a nutshell, the hand-scraping difference accounts for four main benefits.

  • Accuracy - Scraping is done to align components within millionths of an inch, allowing for consistently-held, tight tolerances.
  • Flatness - Contact points prevent rocking, add balance when tightening, and allow for true flatness in parts.
  • Oil Pockets - Oil on the surface allows gliding motion.
  • Appearance - The finishing touch of scraping is aesthetic. Parts are “design scraped” to achieve an attractive textured finish.

To download a copy of the white paper, click here.


Posted by: Mark Albert 19. March 2015

Going to NPE, the big plastics show?

NPE2015: the International Plastics Showcase happens March 23-27, 2015, in Orlando. Be sure to check out the technical presentations sponsored by Plastics Technology at the magazine’s Knowledge Network at Booth 2602 in the West Hall.

Many of the topics are hard-core stuff for people in the plastics industry, but others appeal to the broader interest of managers in manufacturing. These include developing a skilled workforce, additive manufacturing, moldmaking and reshoring. For the complete line-up, click here.

A visit there is also an opportunity to get complementary drink tickets, a cool T-shirt and chances to win big prizes. Registering in advance is encouraged and it’s easy. Get the details here.

Posted by: Mark Albert 13. March 2015

Diving into Innovation

Attendees at the recent MFG Meeting in Orlando had an opportunity to immerse themselves in the most important aspects of innovation as force for revitalizing the manufacturing industry.

Here are a few of the insights offered by the speakers and panelists at this event.

George Blankenship, former executive of Tesla Motors, Apple Computers and Gap Inc., make the point that innovative products succeed only if potential buyers and customers are engaged in a way that connects their core interests and values with the core features and benefits that differentiate a new product.

Talking about the Internet of Things, Rob Gremley, executive VP, Internet of Things and Service Lifecycle Management at PTC, emphasized that connected devices (which interact with everyone and everything across a global network) impose new models for how manufacturers create, operate and service them. Service (how these products sustain and renew their value to users) will require the boldest new thinking, he says.

Innovation, the drive to invent the new (new products, new methods, new ideas, new customer experiences) can be a powerful force. It saved LEGO, the global company known for its interlocking toy "bricks"). However, as David Robertson, Wharton School of Business, demonstrated, this force must be pointed toward a clear goal and led by managers guided by a clear vision.

The icon for innovation in manufacturing these days is 3D printing. A panel of experts put this development into perspective. Its power to complement and enhance conventional machining methods represents its greatest impact on manufacturing, rather than the likelihood that it will displace subtractive machining on a wholesale basis. Everyone is still learning what additive can and cannot do.

At the event, Hybrid Technologies Ltd. received the inaugural International Additive Manufacturing Award. Dr. Jason Jones, co-founder and CEO of Hybrid Technologies, accepted the award on the company’s behalf. In his comments, he related his experiences in the years-long effort to develop a practical method to combine laser metal cladding with CNC machining on the same platform. He said that the success of his company rested on bold new thinking for sure, but that persistence, patience, good luck and the ability to turn adversity into opportunity were equally important. Creativity, not knowledge, will distinguish the true innovators in this era, he said.

John B. Rogers Jr., cofounder and CEO of Local Motors (the company's Strati is touted as the world's first 3D printed car) said that manufacturing will look more personal—customers will have direct input on the making of the products they intend to buy. The real drags on innovation are not technical challenges, he said, but rather entrenched bureaucracies, closed-minded regulators and old-guard manufacturers protecting what they consider their turf.

Finally, some attendees took the opportunity to be immersed in innovation quite literally. As a novel fundraiser, a number of members of the Precision Metalforming Association, jumped into the hotel’s pool in their formal wear following the gala dinner on the list night of the event. They, and their wet tuxedos, were raising funds for the association’s PAC efforts.

Hosted by AMT—The Association for Manufacturing Technology, National Tooling & Manufacturing Association and Precision Metalforming Association, The MFG Meeting brings together the complete chain of manufacturing to discuss the current and future state of the manufacturing industry.

Posted by: Mark Albert 6. March 2015

Video Highlights Value of Pedestal Workholding

For multi-axis machining, a good workholding fixture gets the part away from the worktable surface, yet holds the part securely for aggressive machining. This video shows a dovetail pedestal doing this job.

Note the extra “elbow room” the spindle head needs to access five sides of this workpiece. The video is also a good example of 3+2 machining, which is one of the most valuable options for a machine with full five-axis capability. In this case, the machine is a DMG MORI DMU 50 five-axis machining center under power at Boldt Machinery Inc. in Erie, Pennsylvania, for a recent customer demo event highlighting 3+2 machining.

You don’t need to watch the entire video (it’s 10 minutes long). Sampling different segments, however, reveals a variety of operations, mostly with short, stout cutting tools that make 3+2 machining an advantageous option.

What the video does not show is the new triangular geometry incorporated into the dovetail clamping surfaces of this pedestal fixture. You can get that story here. The new fixturing system is from AMT Innovations of Orchard Park, New York.

In addition, examples of using multiple pedestal fixtures to hold large parts can be seen here. Of course, the applications shown are useful for thinking about the flexibility of pedestal workholding fixtures in general.

Posted by: Mark Albert 20. February 2015

Cylindrical Grinding Technology in Motion

“The Cylindrical Grinding Universe” was the theme for United Grinding’s 2015 Motion Meeting in Switzerland. This theme was particularly appropriate because a key point was the expansion of ID grinding capability to provide universal coverage of the full range of workpiece sizes.

Every year, United Grinding hosts a gathering of its sales partners and trade press editors from around the world. The purpose of this annual ‘Motion Meeting” in Thun, Switzerland earlier this month, was to highlight the group's latest developments in grinding technology, especially in the area of cylindrical grinding, which includes the Studer, Schaudt and Mikrosa brands. United Grinding also used this occasion to deliver its prestigious Fritz Studer Award for innovative research in machine tool or grinding technology.

Topping the list of new products introduced at the event are the Studer S131 and S151 cylindrical grinding machines, which are built on the innovative S141 cylindrical grinding platform. The S141 platform is distinguished by ID and OD grinding capability enabled by a grinding spindle turret that accommodates as many as four grinding spindles. Both internal and external grinding operations can be completed in one setup to enhance accuracy and reduce non-cut times.

The S131 is smaller than the S141. It has a swing diameter over the table of 250 mm (9.8 inches) and a maximum grinding length of 175 mm (6.9 inches) for ID grinding and 125 mm (4.9 inches) for OD grinding. It accommodates workpieces as long as 300 mm (11.8 inches).

The S131 is a compact ID/OD grinder for smaller work pieces.

For reference, the S141 is available in models for machining workpieces with maximum lengths of 300, 700 or 1,300 mm (11.81, 27.56 or 51.18 inches) and IDs ranging to 250 mm (9.84 inches).

To complete the series, the S151 is larger than the S141. The new S151 features a swing diameter over the table of 550 mm (21.6 inches) and a maximum grinding of length of 400 mm (15.7 inches) for ID work and 150 mm (5.9 inches) for OD work. It accommodates workpieces with a maximum length of 700 mm (27.5 inches).

The S151 grinds workpieces as long as 700 mm (27.5 inches).

Studer’s line of ID/OD grinders now covers the range of shaft diameters and lengths with no gaps for both ID and OD capability for complete grinding in one clamping. In addition, all of the machines share the same ergonomics and clean, streamlined styling of the enclosure and pendant-mounted control unit.

Another recent product worthy of mention is the CrankGrind, a crankshaft grinding machine from Schaudt. Cosmetically, this grinder sports that “new look” that represents the unified corporate identity within the Cylindrical Grinding Group as well as the company-wide emphasis on functionality and ergonomics. More important is its capability. The CrankGrind is designed to do rough- and finish-grinding of both main and pin bearings on automotive crankshafts, all in one setup on one machine.

The Schaudt CrankGrind is designed to be a “superproductive” grinder for the complete grinding of automotive crankshafts.

The Motion Meeting also affirmed Studer’s leadership in energy efficiency, which is a concern among all machine tool builders and end users. Studer’s multi-prong approach may be a model for comprehensive energy management in industrial equipment. For detailed commentary, click here.

A further highlight of the meeting was the presentation of the 2014 Fritz Studer Award to Dr. Eduardo Weingärtner from the Swiss Federal Institute of Technology Zürich. Dr. Weingärtner’s work pioneered the application of the wire EDM process for on-machine dressing of metal bonded grinding wheels. This research was instrumental in the introduction of the Studer WireDress system detailed here.

Finally, as a bonus for visiting trade press editors, a tour of United Grinding's Mägerle brand was arranged in Fehraltdorf prior to the conclave in Thun. Mägerle, part of the company’s surface and profile grinding group, specializes in large, multi-axis grinding machines. These highly engineered systems are custom-built from flexible modules to combine unique applications with proven design concepts. Although Mägerle grinders represent some of the most demanding and advanced applications in grinding, the company continues to rely on a solid foundation of traditional skills such as hand scraping of ways for mechanical accuracy. In fact, the company's apprenticeship program aggressively courts young talent to replenish its highly skilled workforce, and is a model for sustaining the thoroughly Swiss tradition of precision and meticulous craftsmanship.

Although Magerle does not produce “standard” models of grinders, it does offer distinct product ranges, including the MFP line of multi-axis surface and profile grinders. The MFP 50 shown here is part of a grinding cell for a jet engine manufacturer. The new styling of the MFP grinders reflects the corporate redesign.

« Prev | | Next »

Subscribe to these Related
RSS Blog Feeds

Channel Partners
  • Techspex