Blog
 

Peter Zelinski

Peter Zelinski has been a writer and editor for Modern Machine Shop for more than a decade. One of the aspects of this work that he enjoys the most is visiting machining facilities to learn about the manufacturing technology, systems and strategies they have adopted, and the successes they’ve realized as a result. Pete earned his degree in mechanical engineering from the University of Cincinnati, and he first learned about machining by running and programming machine tools in a metalworking laboratory within GE Aircraft Engines. Follow Pete on Twitter at Z_Axis_MMS.

Posted by: Peter Zelinski 26. March 2015

Coming Soon: New Duratomic

Certain products succeed long enough that the product brand acquires its own cachet apart from the originating company name. In certain circles, Seco’s “Duratomic” is like that. The toughness and wear-resistance of this cutting tool coating have made it successful in steel machining applications such as the one portrayed in this video. When the coating was introduced in 2007, Seco says it represented the first time a coating had been manipulated on the atomic level. And in few days, the company says, Duratomic will be introduced again.

Launching April 1, a complete overhaul to the Duratomic line will improve upon the previous successful coating with new coating technology delivering 20 percent greater life across most of the tool’s applications, including heavy, low-speed turning applications that are commonplace among oilfield manufacturers that have applied this tooling in growing numbers in recent years.

Another important feature to be introduced is “edge intelligence,” the company says. The dark color of Duratomic inserts has made edge wear difficult to see. This has been a challenge in high-volume facilities that change inserts frequently, because inserts with unused edges sometimes get discarded. The new Duratomic addresses this challenge with a multilayer system that the company says makes tool wear easy to visually gage.

Learn more by visiting the Duratomic site, which includes a countdown clock ticking the moments until the line’s relaunch.

Posted by: Peter Zelinski 24. March 2015

Additive Manufacturing Users Group Conference, April 19-23

Jacksonville riverfront photo courtesy of Visit Jacksonville.

If you are one of the many manufacturers seriously considering an investment in additive manufacturing, and if you can make it to northern Florida in a few weeks, then take a look at the Additive Manufacturing Users Group annual conference, returning to Jacksonville April 19-23. The program this year is particularly strong, or at least it seems that way to me, because many speakers in the posted schedule address topics relevant to applying additive manufacturing for industrial production.

The Additive Manufacturing Users Group, or AMUG, is a unique organization. As the name makes clear, it consists of users of additive technology. The group started decades ago as a forum for stereolithography enthusiasts, but as 3D part-making technology advanced, both the scope and the name of the group changed various times. Now, with the maturing of 3D printing for prototyping and the advance of the technology into production, a large number of manufacturing professionals can rightly describe themselves as additive manufacturing users, and this annual conference has grown into a significant additive manufacturing event.

AMUG president Mark Barfoot says one of the challenges of a program involving so many speakers is nailing down a precise schedule, but the version released this week is expected to be final. View the most recently posted agenda here. Register for the conference here.

Posted by: Peter Zelinski 20. March 2015

Bloodhound Fin Support Machined with Vortex

Five-axis machining may be challenging, but it’s not rocket science. Except when it is.

The Bloodhound is a 1,000-mile-per-hour rocket-powered car being developed to break the world land speed record, possibly this year. Though it’s named for a surface-to-air missile, the Bloodhound car will maintain missile-like speed entirely on the surface.

We’ve reported before on a leading-edge part made for this car. News of one of the latest examples of an unusual part for this car come from Delcam, whose PowerMill software and Vortex machining strategy figured into the five-axis machining of a tail-fin shear plate that will support the car’s large vertical fin at full speed.

The part shown on the screen in the previous image supports the car’s large vertical fin against the drag at full speed. Find images of the completed machined part posted here.

According to this BBC report, the aluminum plate—machined by Manufax Engineering on a Correa five-axis gantry-type—is more than 2 meters long by 400 mm wide, but only 2 mm thick in some places, and precisely curved to follow the contour of the chassis. An aluminum block weighing 750 kg was milled down to less than 9 kg to make this part.

Delcam says the combination of tooling from SGS and tool paths achieving efficient engagement through Vortex allowed the part to be machined with over 40 percent less cycle time than it would have otherwise required.

Posted by: Peter Zelinski 16. March 2015

Video: Robot Changes Vise Jaws for Continuous Machining

If a robot can load and unload parts, why can’t it do the same for workholding? VersaBuilt creates robot systems in which the vise jaws that hold a given part inside the machining center also serve as the grippers enabling the robot to load and unload that part. Changing vise jaws as needed enables the robot to shift parts from operation to operation. If there are different jaws on the shelf for different part numbers, then this same jaw change can let the robot switch seamlessly from job to job.

VersaBuilt filmed this video of continuous unattended 3-op machining on a VMC using this system, with the robot switching jaws for the different operations.

Posted by: Peter Zelinski 2. March 2015

Reasons for In-Sourcing Machining

Having twin-spindle/twin turret lathe technology in-house lets Comp Cams produce billet racing camshafts more quickly than when it outsourced camshaft machining.

Effort Foundry used to send castings away for machining, but the company recently invested to create a new, in-house CNC machine shop. Quality control was a big part of the reason for taking ownership of this operation. See the link below for more detail.

This is just one of the potential benefits of retaining control of machining. The reasons why companies have brought or kept machining in-house includes all of the following:

  1. Quality control. Example: Effort Foundry.
  2. Potential to scale up for increasing demand. Example: Ergoseal.
  3. Manufacturing efficiency that comes from knowing the product very well. Example: Reid Machine.
  4. Inventory control. Example: E.F. Bavis.
  5. Fast introduction of new designs. Example: Comp Cams.

Of course, to bring machining in-house, a company needs staff to do the machining. Finding the strategy to develop this staff might be the reason machining returns. PEP Lacey is an example of this. 

« Prev | | Next »

Subscribe to these Related
RSS Blog Feeds

MMS ONLINE
Channel Partners
  • Techspex