Peter Zelinski

Peter Zelinski has been a writer and editor for Modern Machine Shop for more than a decade. One of the aspects of this work that he enjoys the most is visiting machining facilities to learn about the manufacturing technology, systems and strategies they have adopted, and the successes they’ve realized as a result. Pete earned his degree in mechanical engineering from the University of Cincinnati, and he first learned about machining by running and programming machine tools in a metalworking laboratory within GE Aircraft Engines. Follow Pete on Twitter at Z_Axis_MMS.

Posted by: Peter Zelinski 26. November 2014

Hiring Consultant Shares How to Evaluate Soft Skills

Tony Staub (left) has dramatically changed what he looks for in evaluating machine-shop employees. At the two links in the text below, find our original article describing the shop owner’s change, and also read some additional insights provided by the hiring consultant Mr. Staub works with.

Readers of our recent article describing Staub Machine’s change in hiring philosophy—the shop now hires for personal strengths instead of aiming for metalworking skills—asked about the role of the consultant mentioned in the article. The consultant, whom the article does not name, helps this shop evaluate prospective hires for attributes such as communication ability and the capacity to learn.

His name is Patrick Crotty. The firm he founded is PXC Associates in Orchard Park, New York. He works with various manufacturers on recruitment, and he says the place to evaluate candidates’ soft skills is in the interview. Most hiring managers dislike interviews and have too little experience with them, he says, so they end up doing most of the talking. I recently reached out to him, and he shared these thoughts on evaluating prospective manufacturing employees.

Posted by: Peter Zelinski 24. November 2014

In Case You Missed It: Additive Manufacturing's November 2014 Digital Edition

The cover story of the November issue of Additive Manufacturing places AM into the context of an even larger idea. Lockheed Martin Space Systems is aiming to achieve what it calls the “digital tapestry,” a vision for manufacturing that avoids unnecessary effort and interpretation by keeping all manufacturing information in the digital realm. Additive manufacturing, because it can directly manifest a design conceived through digital collaboration, is valuable to realizing this ideal. Also in this issue, metal and plastic part maker Harbec Inc. describes how it uses AM alongside other manufacturing processes. The digital edition of this issue is available now. To subscribe to Additive Manufacturing, go here.

Posted by: Peter Zelinski 20. November 2014

Acquisition Brings DMLS Capability into M2M Group

Generation Growth Capital Fund is an investment group managed out of Milwaukee and Chicago that aims to develop the unrealized value of small- to mid-size manufacturing businesses. We first wrote about the fund here. The firm has sought to acquire contract manufacturing businesses featuring both attractive machining capabilities and strong customer relationships in important markets. As of the beginning of this year, it had integrated four such machine shops into a multi-site manufacturing organization called the M2M Group.

As a whole, these four formerly independent shops provide capabilities that range through large-part machining, micromachining, multitask and five-axis machining, and rapid prototyping of both machined parts and castings. Bringing these companies together into one group enables them not only to leverage one another’s resources, says Generation Growth Capital Fund managing director John Reinke, but also to realize efficiencies by adopting an organization-wide set of best practices and sharing certain quality, management and back office expenses. The aim, he says, is to build a contract manufacturing organization able to serve OEM customers throughout the entire manufacturing process from early prototyping to mature production. Until recently, though, there seemed to be a piece missing.

Mr. Reinke says, “The thing keeping me up at night was: What’s going on with additive manufacturing?”

Now, the M2M Group will discover the answer to that question. The fifth company to be acquired into the group is Atlantic Precision Inc. (API) of Port St. Lucie, Florida, a machining business that also additively manufactures metal parts through direct metal laser sintering, or DMLS.

That API became available for acquisition was a welcome development, Mr. Reinke says. The company was already known to his group. M2M company Tri Aerospace had active projects with API and a track record of working with this company for metal prototype parts and short-run production runs, particularly for the jet engine industry. Before API was a candidate to be bought, Mr. Reinke had been searching for the way to add additive manufacturing of metal parts to the M2M stable, and the findings of his search say something about the state of additive manufacturing as a production option today.

In general, he says, the companies he found were just starting out. It was difficult to find an additive manufacturing provider of the right size to be acquired by his fund that was anything more than a recently launched or recently reinvented company. Through acquisition, he hoped for the M2M Group to avoid the learning curve of additive manufacturing, but what he consistently found were companies going through that same learning curve themselves. Therefore, he had all but resolved to launch additive manufacturing as a green-field project within one of the existing M2M businesses.

Then the group heard from API. The company is distinctive for the length of time it has offered additive manufacturing services to industrial customers, he says. To an extent, at least, it has been through the learning curve.

And it has been through this curve alongside customers. This is also key, he says. The trial-and-error requires customers who are willing to go through the process along with the supplier. API has the customers who had that willingness, and as the result of working closely together to make important strides forward in understanding additive manufacturing, API now has particularly strong customer relationships.

One anecdote illustrates how quickly events are moving related to this method of making parts, Mr. Reinke says. While the acquisition was under way, a customer asked API to purchase another DMLS machine so the shop would have additional capacity for upcoming work. As the potential purchaser, Mr. Reinke’s fund had to react along with API to this request. Thus, the terms of the still-unfinished acquisition were rewritten so that this machine purchase could go ahead.

Posted by: Peter Zelinski 13. November 2014

Additive Manufacturing Award Website Now Live

AMT—the Association for Manufacturing Technology—and VDW, the German Machine Tool Builders’ Association, recently announced the launch of the International Additive Manufacturing Award (IAMA) competition. Rules, submission guidelines and additional details about the competition can now be found at the new IAMA website.

The award recognizes innovations in additive manufacturing for industrial applications. Equipment providers, users, component suppliers, data modelers and members of academia all qualify to enter. The winner will receive a $20,000 cash prize and a marketing and promotional package worth $80,000. Modern Machine Shop publisher Gardner Business Media is one of the media partners for this award, which will be presented at the MFG Meeting in March in Orlando, Florida.

Applications are being accepted through December 31. Visit for more information.

Posted by: Peter Zelinski 4. November 2014

Two Heads Better Than One in New Hybrid Additive/Subtractive Machine

The two laser cladding heads reside with the machine’s cutting tools in the tool magazine.

In “subtractive” manufacturing (that is, machining), we take it for granted that an efficient process might consist of both a high-speed roughing step and a high-precision finishing step. Why shouldn’t additive manufacturing have these same two options?

At the JIMTOF show concluding this week in Japan, Mazak introduced a new hybrid additive/subtractive multitasking machine, the Integrex i-400AM, which features heads for both high speed and high precision laser cladding for direct metal deposition.

The new machine extends the definition of multitasking, including turning, milling, drilling, additive manufacturing and laser marking in the same machine.

Collaboratively developed with Hybrid Manufacturing Technologies (a company we reported on here), the dual laser cladding heads (or additive manufacturing nozzles) provide options for either rapid  and coarse metal deposition or slower deposition with fine precision. The two heads complement one another—and provide for efficient processing—in much the same way that roughing and finishing tools work together in machining.

The cladding heads reside in the machine’s tool magazine and can be called up as needed. Mazak says it views metal deposition as a natural extension of multitasking—that is, an opportunity to perform more steps and add still more value within a single CNC cycle.

The laser cladding can be used to build near-net-shape 3D forms. Thus, the machine is a potentially attractive choice for small-lot production of parts made from difficult-to-machine metals, because it provides the option for some part features to be grown instead of being generated entirely through machining.

The laser cladding can also be used to coat chosen sections of the part with metal, allowing the machine to repair worn or damaged components such as turbine blades. This cladding could even be used to join different metals in the same cycle.

The full five-axis milling and turning machine tool features machining capabilities comparable to other models in its family. The milling spindle feeds through a B-axis range of –30/+210 degrees, while the spindle that holds the part for turning also permits full C-axis contouring. The tailstock too is fully programmable. Learn more about the Integrex i-400AM here.

Combining laser cladding and machining in the same cycle means that surfaces can be added to parts or features can be grown onto parts within the same cycle that also performs turning or five-axis milling.

« Prev | | Next »

Loading the player ...

Subscribe to these Related
RSS Blog Feeds

Channel Partners
  • Techspex