Peter Zelinski

Peter Zelinski has been a writer and editor for Modern Machine Shop for more than a decade. One of the aspects of this work that he enjoys the most is visiting machining facilities to learn about the manufacturing technology, systems and strategies they have adopted, and the successes they’ve realized as a result. Pete earned his degree in mechanical engineering from the University of Cincinnati, and he first learned about machining by running and programming machine tools in a metalworking laboratory within GE Aircraft Engines. Follow Pete on Twitter at Z_Axis_MMS.

Posted by: Peter Zelinski 11. December 2014

United Technologies Optimization Tool Added to Vericut

Machining verification and simulation software developer CGTech says it prefers to develop its software capabilities internally rather than licensing capabilities that were developed outside. It made an exception in the case of Vericut Force, a physics-based machining optimization tool newly made available for the company’s Vericut software. This resource was developed not by another software company, but by manufacturer United Technologies Corporation, or UTC, the OEM owner of Pratt & Whitney, Sikorsky, Otis Elevator and other industrial brands.

Within UTC, streamlining machining processes using the optimization tool, which was formerly called PromptFM, has cut some cycle times by 50 percent. The company manufacturing leaders and researchers involved in developing the utility therefore want to see it used by company suppliers (ultimately saving cost for UTC). To realize this hope, however, the company needed an established software provider willing to back the product and support its users. Allowing CGTech to adopt it was the answer.

Vericut software from CGTech already has machining feed rate optimization capability. This existing optimization is based on the simulated sweep of the tool’s envelope through the workpiece material. Feed rate changes are calculated from changes in the area of the tool’s material engagement throughout the cut. By contrast, Vericut Force’s optimization draws on modeling of the cut based on metalcutting theory combined with machining experimentation. UTC researchers ran and monitored cutting trials with various tools at various conditions, then interpolated within those results and iteratively refined the software until it produced recommendations that accord with real-world testing.

CGTech says the result is more effective optimization of the cut when cutting conditions are unusual or extreme. Its existing optimization and Vericut Force produce similar results during typical roughing in freer-machining metals, but in finishing hard metals with complex cutter contact conditions, for example, the UTC system offers feed rate recommendations that are nearer to the ideal for that cut.

The initial release of Vericut Force is to UTC companies and their suppliers. The existence of this potential customer base was part of the business case that made licensing the external software product appealing to CGTech. After proving out the new option with these customers, the company says it will extend its availability to the rest of Vericut’s users.

Posted by: Peter Zelinski 3. December 2014

Material Strength Affects Part Weight in Additive Manufacturing

One advantage of additive manufacturing is the freedom to reduce part weight by growing parts that are not solid, but instead have internal lattice or honeycomb structures. The next step is to take this line of thinking farther by choosing or developing materials that are inherently better at making strong lattices.

The sample parts here illustrate the potential. 3D printer maker Stratasys recently announced the availability of thermoplastic material ASA for its line of fused deposition modeling (FDM) printers. In these printers, the most commonplace material used to make functional parts is ABS. Intended for appearance products and products used outdoors, ASA has better aesthetics and better resistance to UV radiation. The latter material also has better mechanical properties, and this benefit can be leveraged in the part design.

With its greater strength, ASA “bridges” better, meaning thin walls or fins used to connect two part details can be trusted to reach farther in ASA. The dumbbell samples show the result. While the part at right uses a lattice design to save weight, the part at left takes advantage of the strength of ASA to realize a more efficient lattice that realizes even greater weight and material savings.

Posted by: Peter Zelinski 1. December 2014

Video: Additive Manufacturing Robot for Foundry Molds

In addition to making either metal or plastic parts, one other production application of additive manufacturing is building in sand to create molds for casting without any need for a pattern. Users include Ford and Hoosier Pattern. From Viridis3D now comes this video of a system that uses a robot to additively produce one-off sand mold components on a conveyor. The company says it is looking for beta sites for this system.

Posted by: Peter Zelinski 27. November 2014

Renishaw to Introduce Additive Manufacturing System Aimed at Production

Renishaw has announced that it is developing a new additive manufacturing system designed and engineered specifically for production manufacturing. The machine, which the company has provisionally named the “EVO Project,” includes a 500-W laser, high-capacity filtration and automated powder handling.

Renishaw became an additive manufacturing OEM through acquisition in 2011. Now, this new machine will be the first the company has designed and engineered in-house, drawing on its own knowledge and background in production manufacturing. The new machine does not replace the Renishaw AM250 system, the company says, as this existing machine remains better suited for flexible manufacturing and research applications in which changes between materials are a requirement.

The new machine, by contrast, is designed for single-material industrial production. Powder handling is said to be almost entirely hands-off, while powder recirculation, recycling and recovery are all carried out within the inert atmosphere of the system.

Renishaw plans for the new machine to be available during the second half of 2015. Learn more here

Posted by: Peter Zelinski 27. November 2014

3D Systems to Acquire CAD/CAM Company Cimatron

This photo from 3D Systems’ booth at EuroMold shows one of the company’s desktop 3D printers. The company also supplies additive manufacturing machines for metal parts as a result of an acquisition last year.

Additive manufacturing technology provider 3D Systems announced this week that it reached an agreement to acquire CAD/CAM software company Cimatron. Cimatron’s products include CimatronE software and GibbsCAM.

The move is the first example I can recall of a company with product lines aimed entirely at CNC machining being acquired by a company that grew up in the 3D printing space. (But see Arcam’s recent acquisition of machining supplier DiSanto.)

My colleague Matt Danford of MoldMaking Technology magazine is at the EuroMold show in Frankfurt, Germany, this week. In 3D Systems’ booth at this show, Matt had the chance to speak with Tom Charron, the company’s VP of product marketing, about this move.

3D Systems is “expanding beyond purely additive,” Mr. Charron says. He cites Cimatron in the context of other recent acquisitions by the company, including design and scanning software Geomagic. “It's all about the entire value proposition for manufacturing.”

He says, “The reality is that in five years additive will not be a novel technology off in the corner somewhere. It will be right in the middle of the production floor alongside CNC machines.” Cimatron therefore addresses the company’s ability to serve “the non-additive side of digital fabrication.”

Read 3D Systems’ announcement here.

« Prev | | Next »

Subscribe to these Related
RSS Blog Feeds

Channel Partners
  • Techspex