SolidCAM
Published

A Brief Update On CAM Software Automation

A continuing objective for CAM software suppliers is to enhance the ease of use and level of automation, even as additional functionality is being introduced. As such, the evolutionary march toward further automation of the NC programming function continues.

Share

A continuing objective for CAM software suppliers is to enhance the ease of use and level of automation, even as additional functionality is being introduced. As such, the evolutionary march toward further automation of the NC programming function continues. Many users state that they prefer total push-button automation, while others favor retaining control of the process and some degree of flexibility. In a recent study of worldwide moldmakers conducted by CIMdata, the extent of desired automation was ascertained. The results are shown in the following table:

It can be seen that more than 90 percent of the users prefer a significant level of automation. Further, the most frequent responses were from those who favor maximum automation and those who desire automation, but with guidance being left to the user. Maximum automation can currently be obtained by extensive software customization by users. Firms producing a parametric family of products, such as golf clubs, bottles or shoes, often employ this technique. In addition, research projects are underway, such as the one being conducted by STEP Tools, to directly cut a part from a CAD model without employing an NC programming process as an intermediary operation. When successful, this approach will provide a high degree of CAM programming automation.

  
Table 1: Degree of automation preferred
Provide guidance to a user/not full automation38.9%
Obtain maximum automation37.0%
Automate standard functions only14.9%
Retain maximum user flexibility/limited automation9.3%

Concurrently, to further software automation, a number of vendors have implemented or are implementing knowledge-based machining (KBM) software systems. Generally speaking, KBM systems are either adaptive or generative and are either feature-based or parts-based. In adaptive machining, traditional programming processes are captured by the software as programming occurs and are saved as process templates. In subsequent identical or similar situations, a template can be re-used directly or modified somewhat to adapt to a new situation. In generative machining, a predefined set of machining practices and/or rules are applied to a feature or a part. Given the part geometry, part material and tolerance, a machining process can automatically be created by the software.

In feature-based machining, a part is viewed as a group of interrelated manufacturing features such as pockets, holes or slots. Feature recognition is often used to automatically recognize the features. Specific machining strategies and parameters are then applied to each feature. This type of machining is usually employed for prismatically shaped parts. In parts-based machining, a part is treated as a whole with methodologies that address an entire part and the resultant areas that require rework. This technique is most appropriate for complex-shaped parts such as molds and dies. The following table illustrates this KBM concept and lists some example vendors and products that employ the technique.

Table 2. Knowledge-based machining grid
 AdaptiveGenerative
Feature-basedPTC/Expert MachinistEGS/FeatureCAM
Parts-basedUGS/UG CAMDelcam/PowerMILL

Over time there has been an evolution or cycling in the KBM technology being introduced by suppliers. The first products introduced in the late 1980s and early 1990s were generative-based products. These systems did not become commercially successful, primarily because of the level of effort required by users to embed their machining practices and rules in the process. In the mid to late 1990s, the adaptive approach became commonplace, as it requires a minimum front-end investment.

In comparing adaptive and generative KBM software, each approach has its advantages. The adaptive type is quicker to implement, does not require the creation of rules, involves lower development and maintenance costs, captures settings and does not base efficiency on the number of rules. The generative type is likely to be the ultimate solution, is more flexible to design changes and the range of parts, captures manufacturing rationale, has a process independent of templates and does not create a file management problem.

IMTS 2024
SolidCAM
To any Measurement Question there is an Answer
Mazak Multi-Tasking: Your Parts Multiplier.
Kennametal
Koma Precision
High Accuracy Linear Encoders
Paperless Parts
Gravotech
Hurco
IMTS 2024
The view from my shop.

Related Content

Basics

4 Steps to a Cobot Culture: How Thyssenkrupp Bilstein Has Answered Staffing Shortages With Economical Automation

Safe, economical automation using collaborative robots can transform a manufacturing facility and overcome staffing shortfalls, but it takes additional investment and a systemized approach to automation in order to realize this change.

Read More
Automation

Partial Automation Inspires Full Cobot Overhaul

Targeting two-to-four hours of nightly automation enables high-mix manufacturer Wagner Machine to radically boost its productivity past a single shift.

Read More
SPONSORED

Modern Bar Feeds Bring New Life to Automatic Swiss Lathes

Cam-actuated Swiss lathes are still the fastest way to process many parts. By adding modern bar feeders, this shop has dramatically improved their utilization with the ability to work unattended, even in a lights-out environment.

Read More
Automation

Which Approach to Automation Fits Your CNC Machine Tool?

Choosing the right automation to pair with a CNC machine tool cell means weighing various factors, as this fabrication business has learned well.

Read More

Read Next

Large Part Machining

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
World Machine Tool Survey