Starrett 2900 Series Digital Indicators
Published

Digital Thread Boosts Data-Driven Manufacturing

The National Institute of Standards and Technology (NIST) is initiating a project to demonstrate how a standardized 3D model of a product can integrate and streamline production from initial design through final inspection in a continuous, coherent data-driven process.

Share

Data embedded in a 3D model will serve as a “digital thread” that unifies and integrates all manufacturing steps to save time and cut costs.

The National Institute of Standards and Technology (NIST) is initiating a project to demonstrate how a standardized 3D model of a product can integrate and streamline production from initial design through final inspection in a continuous, coherent data-driven process. With this project, NIST researchers and their industrial partners intended to develop what they see as a new dimension to manufacturing capabilities.

The project will demonstrate the feasibility—and benchmark the advantages—of using standardized, 3D models for electronically exchanging and processing product and manufacturing information all the way from design through inspection of the final part. This tightly integrated, seamless string of activities is what manufacturers are calling a “digital thread.” The project is aptly named the Design to Manufacturing and Inspection Project.

This approach contrasts with the common practice of converting 2D computer-aided design (CAD) drawings into static documents. The 3D models will be embedded with data and instructions that computers can interpret and apply to key manufacturing functions. According to NIST, this development will open the way to significant operational and bottom-line benefits. These include reduced cycle time and cost, less duplication of effort, lower risk of errors, increased part yields and higher-quality products.

Collaborators in the NIST-led project include International TechneGroup Incorporated (ITI), Milford, Ohio, and Advanced Collaboration Consulting Resources, Summerville, South Carolina, who are interoperability-focused manufacturing-services providers. Also participating are Rockwell Collins, an Iowa-based manufacturer of avionics and communication equipment for defense and commercial uses; and Geater Machining and Manufacturing, an aerospace supplier located in Independence, Iowa. Other participants are CNC Software, a Tolland, Connecticut, maker of computer-aided manufacturing (CAM) software; Mitutoyo America, a maker of measurement equipment and software; and software vendor CoreTechnologie, Rossford, Ohio.

The apparent catalyst for integrating this project is a new international standard for incorporating computer-readable product and manufacturing information (PMI) into 3D models. These models do not require human interpretation of graphical depictions followed by manual data reentry. Recently published by the international Organization for Standardization, ISO 10303-242 (also known as STEP AP 242) enables designers and process and systems engineers to embed 3D representations of parts with actionable specifications for materials, geometrical and dimensional tolerances, and surface texture, as well as process notes, finish requirements and other information

In the new project, Rockwell Collins will use its CAD system to generate a 3D design of a part, complete with all feature tolerances and other specifications. The design will be translated into STEP AP 242 so that Geater Machine and Manufacturing can repurpose the model into the language understood by the software it uses to generate machining instructions. Independently, Geater will reuse the STEP AP 242 model in software to generate code that will direct a coordinate measuring machine (CMM) to determine whether the part is manufactured as designed. The intent is to perform this step with no manual data entry. The project calls for researchers to verify and validate translations involved in the data exchanges at each stage in this thread.

The project will promote the implementation of data-driven manufacturing. “The various systems involved need to be autonomous, self-aware and self-correcting,” says NIST systems analyst Allison Barnard Feeney, leader of the project. “At the same time, they must be able to work harmoniously with human supervision and collaboration."

A full-scale demonstration of end-to-end interoperability is expected by summer 2015.

Precision Components
Techspex
Starrett 2900 Series Digital Indicator
benchmark international advanced manufacturing trade show
SolidCAM
IMTS 2024
High Accuracy Linear Encoders
World Machine Tool Survey
Kennametal
DN Solutions
CHIRON Group, one stop solution for manufacturing.
Paperless Parts

Related Content

Give Job Shop Digitalization a Customer Focus

Implementing the integrated digital technologies and automation that enhance the customer's experience should be a priority for job shops and contract manufacturers.

Read More
SPONSORED

Digital Tools Meet Practical Applications

Digital manufacturing will see a much larger footprint at IMTS 2022 thanks to technologies that bridge the gap between the digital and physical.

Read More

Diving Deeper Into Machine Monitoring Data

Data visualization is the first step in using machine monitoring data, but taking it to the next level requires looking for trends within the data.

Read More
Aerospace

Machine Monitoring Boosts Aerospace Manufacturer's Utilization

Once it had a bird’s eye view of various data points across its shops, this aerospace manufacturer raised its utilization by 27% in nine months.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Aerospace

5 Tips for Running a Profitable Aerospace Shop

Aerospace machining is a demanding and competitive sector of manufacturing, but this shop demonstrates five ways to find aerospace success.

Read More
IMTS 2024