VERISURF
Published

Gaging Distance Between Hole Centers

Many of the gaging applications we've considered over the years involve size inspection of a single feature, that is, the diameter of a hole, depth of a groove, height of a gage block, and so on. Many parts, however, contain multiple features that establish dimensional relationships between two or more other parts.

Share

Many of the gaging applications we've considered over the years involve size inspection of a single feature, that is, the diameter of a hole, depth of a groove, height of a gage block, and so on. Many parts, however, contain multiple features that establish dimensional relationships between two or more other parts. Examples include engine blocks, with multiple cylinder bores that establish distances between pistons, and pump housings with two overlapping bores that establish clearance between two mating impellers. As with people, machined features tend to be simple and straightforward when they're single. When people or parts are in relationships, however (and especially when those relationships involve mating) things can get complicated.

Gaging the distance between hole centers is a good example, because it requires that you first locate those centers in space before you can measure the distance between them. Gaging equipment may vary widely with the application, and include considerations of part size and configuration, and required throughput and accuracy. But the basic idea remains the same across various technical approaches; you must first establish references between the part and the gage, often in three dimensions, before you can measure deviation from a specified distance between features.

A basic approach is a hand-held gage, like that shown in the figure. Both of the plugs have two fixed contacts, and one spring-loaded contact each, so they automatically center themselves in their respective holes. One of the plugs is a fixed reference; the other is a sensitive contact. Note also the hard depth stops, establishing a reference in the third dimension. The sensitive plug moves relative to the fixed plug on a frictionless device such as a pantograph mechanism or an air-bearing carriage for good repeatability. The sensing/indicating device used to measure deviation may be a simple dial or digital indicator, or an electronic probe and amplifier.

This gage is economical, reliable, and easy to use. It may be employed with parts as large as an engine block (or larger), or as small as a connecting rod, and its capacity may be adjustable to measure different distances. The plugs may be replaceable, to accommodate different size holes. Its limitation is that it only measures distances between centers; no other types of features or relationships may be checked.

The next option is a gaging fixture engineered for a specific part. Such gages are generally benchtop devices, so they are limited to use with relatively small parts (that is, automotive conrods) that can be brought to them. The workpiece is typically located over fixed plugs, each of which may contain one or more air or electronic probes as sensing devices. Fixture gages may offer limited adjustability, but tend to be very application-specific.

The benefit side of the coin, however, is substantial. Fixture gages tend to be very stable, and allow high throughput rates. Because the probes can be spaced quite densely within the fixture, it is possible to measure multiple features or characteristics simultaneously. For example, a conrod gage with sixteen probes (eight each for the wrist pin and the crankshaft bores) can be engineered to measure the following features, in addition to center distance between bores: four diameters per bore (6:00 to 12:00, and 3:00 to 9:00, at both top and bottom), bore "out of roundness" (that is, the difference between two diameters at right angles), bore taper, and bend and twist between bores. Gaging computers and some amplifiers can be readily programmed to perform all these measurements without changing the gaging setup.

VERISURF
Mazak Multi-Tasking: Your Parts Multiplier.
MMS Top Shops
To any Measurement Question there is an Answer
Gardner Business Intelligence
CHIRON Group, one stop solution for manufacturing.
Paperless Parts
Norton Superabrasives Wheels  Paradigm Plus
Gravotech
Kennametal
World Machine Tool Survey
Hurco

Related Content

Basics

How to Choose the Right Cut Off When Measuring Roughness

Measurement results for surface finishing parameters can vary depending on the filter parameter (Lc), also known as the cutoff.

Read More

Choosing the Correct Gage Type for Groove Inspection

Grooves play a critical functional role for seal rings and retainer rings, so good gaging practices are a must.

Read More
SPONSORED

Building an Automation Solution From the Ground Up

IMTS 2022 provides visitors the opportunity to meet with product experts to design automation solutions from scratch.

Read More
Measurement

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More

Read Next

Large Part Machining

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
VERISURF