Siemens Zel X
Published

Looseness — An Enemy of Precision

When a gage isn’t coming up with accurate measurements, the culprit could be a connection that simply isn’t tight enough.

Share

There are a couple of professional football teams out there who are leading their divisions and whose main driving principles include maintaining a focus on the fundamentals in order for their players to do their best. This same principle can be applied in gaging: Going over the simple basics—sometimes again and again—will enable us in the dimensional measurement world to achieve championship-level results.

In recent columns, we’ve discussed several enemies of precision gaging, including dirt, force and wear. Another that is frequently overlooked in situations where a gage does not repeat or calibrate properly is looseness.

Because I’ve seen the effect of looseness on precision measurement so many times, one of the first things I look for when there are problems is a loose contact point. The indicator point should not be tightened with pliers so hard that the screw threads swell the end of the rack or undue rotation of the rack damages the anti-rotation pins. It should, nevertheless, be a little more than just finger-tightened.

The photo above shows a typical bench stand gage. We have highlighted places on the gage where looseness can cause problems. When troubleshooting a gage that isn’t coming up with the right measurement, check that all the screws, nuts, bolts and connections are socked up tight. One loose spring on a pantograph-style transfer device will be hard to detect, but until it is corrected, you can be sure the gage will produce inaccurate results.

Looseness is not necessarily associated only with mechanical joints. It can also show up in the form of a shoddy solder, or a bad connection in a cable or connector that can make the gage completely unusable at times. And I can’t tell you how many times something as simple as a loose hose connector in an air gage causes a very tiny leak that can introduce noise or even put the whole gage off scale.

A related enemy that is often overlooked with adjustable bore gages is centralizer pressure. If centralizer pressure is too light or uneven, the gage’s reference and sensitive contacts may not get centered on the true diameter of the part bore. The user who is relying on the centralizer will find himself measuring the chord of the circle instead of the full diameter. On the other hand, if the centralizer pressure is too high, the centralizer contact can burnish or even scratch the surface of the bore, not to mention also cause excessive wear to the contacts.

The amount of centralizer pressure designed into a gage depends on the weight of the gage—specifically, on how much of the gage’s weight or drag the centralizer has to move. For example, consider measuring the inner diameter of a bore with the typical adjustable bore gage while the workpiece is in the spindle of the machine tool. In this case, the gage would be horizontal, the centralizer would be vertical, and the weight of the gage would be supported on the reference contact (the one pointing down). But suppose the operator turns the gage sideways (because that’s what operators like to do). Now the weight of the gage is no longer supported by the reference contact. The centralizer spring must not only support the weight of the gage head, but in centralizer fashion, must basically pull the gaging head up against gravity into the center of the bore. For some gages, especially those set up for larger diameters, this can amount to a lot of weight and require some pretty hefty gaging force.

The bad news/good news here is that while gages get heavier with increased bore size, chordal error gets smaller with increased bore size. So there is some balance. However, in the case of smaller bores—especially those smaller than a couple of inches—bad centralization caused by improper gaging pressure can be a serious enemy to precision.

Clearly, looseness and improper pressure are both enemies any championship-seeking team can do without. 

Siemens Zel X
DN Solutions
OASIS Inspection Systems
MMS Made in the USA
Gardner Business Intelligence
World Machine Tool Survey
CHIRON Group, one stop solution for manufacturing.
Hurco
Gravotech
VERISURF
Koma Precision
Norton Superabrasives Wheels  Paradigm Plus

Related Content

How To Calibrate Your Calipers

If you’re interested in calibrating your own digital, dial or Vernier calipers, here are some steps to take to make sure it goes off without a hitch.

Read More
Turning Machines

Threading On A Lathe

The right choices in tooling and technique can optimize the thread turning process.

Read More
Basics

Key CNC Concept No. 1—The Fundamentals Of Computer Numerical Control

Though the thrust of this presentation is to teach you CNC usage, it helps to understand why these sophisticated machines are so important. Here are but a few of the more important benefits offered by CNC equipment.

Read More

Understanding G27, G28, G29 and G30

Take a closer look at these reference position commands.

Read More

Read Next

Large Part Machining

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Siemens Zel X