Specialized Plastic Packaging for Cutting Tools!
Published

Faster Production of Inside Threads

Modern tools, control and software create a range of options for producing inside threads efficiently.

Randy Pearson, Siemens Energy & Automation Machine Tool Business

Share

There are different ways to produce internal threads. In conventional tapping, threads are cut into a predrilled hole using a screw tap, either manually or by a machine.

Cold-forming taps, by contrast, are used for the chipless creation of threads. The thread is not created by cutting, but by cold forming, with the material pressed into the required profile.

With the development of CNC machine tools, thread milling was introduced as an additional possibility. Here, the thread is milled into the hole using specific circular and feed motions of the tool. Each of these three methods is suited to different applications.

The “Classic” Method: Tapping

In conventional tapping, material is removed in a continuous cut. Tapping comes up against its limits in materials with hardness greater than 60 HRC, as well as in deep threads, where problems arise related to dimensional accuracy and tool breakage due to chip-removal difficulty.

Chipless: Cold-Form Tapping

Cold-form tapping is used for materials with a strength of less than 1200 N/mm2 and a stretch-at-break of more than 8 percent. Thanks to cold-forming, this chipless process achieves threads with higher static and dynamic strength in combination with very good surface quality.

However, the disadvantages of cold-form tapping include the high torques compared to conventional tapping, as well as the need for high-quality lubricants.

Productive and Precise: Thread Milling

Thread milling is suitable for almost all materials and offers the greatest flexibility and productivity. Thread flanks are machined cleanly and there is no axial miscut. For hard-to-machine materials, thread milling tends to be the best method. One underappreciated advantage is the fact that when the tool breaks, it can be removed easily. The restrictions on thread milling relate to the thread depth, which can generally be no more than 3 times the thread diameter.

Whatever threading method is used, one thing is certain: With the thread cycles in today’s advanced CNC software modules, programming is quick and easy.

Cycles for the Production of Inside Threads

The actual programming requirements of inside threads are complex, because a number of math values have to be taken into consideration. Advanced CNC thread cycles can take care of this complexity in an efficient manner. These cycles ask input factors including the required tool, thread depth and cutting speed, as well as procedure-specific parameters.

Those procedure-specific inputs take into account the individual characteristics of the particular tapping operation—such as, for example, whether the conventional tapping thread is to be produced in a single cut or via chipbreaking. If yes, the reversal movement and change in direction of rotation for chip breaking can be automatically programmed the software.

Linking of Work Steps

Separate work steps typically also are needed for the production of inside threads. For example, the hole is centered and pre-drilled before the inside thread is created. If the workpiece contains several identical inside threads, then these work steps must be repeated for each position. To reduce the programming work involved, sub-programs can be created that are called up for the various positions.

In fact, with the proper CNC software, programming of these steps can be carried out even more efficiently. All the work steps are programmed just once, then linked via a position pattern. The programming for centering, drilling and tapping is created one time, applying to all positions of the pattern. Configurable cycles for lines, hole circles, grids, frames and special positions are available as these position patterns.

About the author: Randy Pearson is the Siemens sales support manager for U.S. dealers and OEMs. A specialist in CNC training, he participates in various seminars and classes Siemens conducts at schools and shops, as well at Siemens training facilities around the country.
 

SGS
Scientific Cutting Tools cutting tools displayed
Iscar
Ingersoll Cutting Tools
GWS Tool Group
Specialized Plastic Packaging for Cutting Tools
Horn USA
IMCO
Sumitomo
Paperless Parts
IMTS 2024
The view from my shop.

Related Content

SPONSORED

Best Practices: Machining Difficult Materials

Cutting hardened steel, titanium and other difficult materials requires picking the right tools, eliminating spindle runout and relying on best practices to achieve tight part tolerances.

Read More
Milling Tools

Choosing Your Carbide Grade: A Guide

Without an international standard for designating carbide grades or application ranges, users must rely on relative judgments and background knowledge for success.

Read More
Milling Tools

A New Milling 101: Milling Forces and Formulas

The forces involved in the milling process can be quantified, thus allowing mathematical tools to predict and control these forces. Formulas for calculating these forces accurately make it possible to optimize the quality of milling operations.

Read More
Basics

10 Tips for Titanium

Simple process considerations can increase your productivity in milling titanium alloys.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Large Part Machining

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
Sumitomo