| 1 MINUTE READ

New Hybrid Unites Additive Manufacturing and Grinding

A machine performing surface and profile grinding, along with milling and laser metal deposition, is believed to be the world’s first hybrid grinder.

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon
�

Using the hybrid grinder, this stator vane section was resurfaced via metal deposition, then machined to the part’s final tolerance via grinding.

To date, hybrid machine tools have combined additive manufacturing capability with milling and/or turning. But now, machine tool maker ELB-Schliff has introduced a grinding machine that is equipped for additive manufacturing. The hybrid version of the company’s “millGrind” is aimed at aerospace engine part production, producing part features both subtractively (through grinding and milling) and additively (through laser cladding). In other words, the machine can generate the features of precise, complex, critical components made aerospce alloys by applying both growing and grinding within a single cycle.

The additive capability comes from the laser metal deposition system from Hybrid Manufacturing Technologies that is integrated into the machine. Hybrid worked with ELB-Schliff on the machine’s development. The result, both companies believe, is the world’s first hybrid grinder.

The combination makes sense. Indeed, it could be argued that additive manufacturing is at least as good a fit with grinding as it is with other subtractive operations. Both CNC grinding and metal additive manufacturing are high-value processes typically performed on high-end machines. In addition, grinding is strong where additive is weak. Features produced additively generally require surface finish improvement, and surface finish is where grinding excels.

A statement from ELB-Schliff adds this: “Grinding particularly excels in cost-effectiveness for processing materials that are difficult to machine, such as nickel-based superalloys. The millGrind runs conventional grinding abrasives with superabrasive capability, and has an XYZ resolution of 0.1 micron. If hybrid milling takes additive manufacturing to a new level of productivity, then hybrid grinding takes additive manufacturing to a new level of precision.”

Find more details here about the ELB-Schliff machine.

�

The hybrid grinder was shown at the recent Paris Air Show.

Related Topics

RELATED CONTENT

  • Bringing Anodizing In-House

    What’s it going to cost? How much space do I need? What environmental hassles will I encounter? How steep is the learning curve? Exactly what is anodizing? Here are answers to preliminary questions shops have about bringing anodizing in-house. 

  • How To Machine Aircraft Titanium: The 8-To-1 Rule For Finishing Walls And Ribs

    Part of a series of articles on more efficient machining of pockets in titanium parts, this article makes the case for a tool with many cutting edges, and describes how best to apply it.  

  • A Model Camshaft Grinding Process

    Optimizing a camshaft lobe grinding cycle has traditionally been based less on science and more on educated guesswork and numerous test grinds. Now, computer thermal modeling software can predict areas where lobe burning is likely to occur, in order to determine the fastest possible work speed that won't thermally damage lobes and greatly reduce the number of requisite test grinds.