YCM Alliance
Published

The Value Proposition of Five-Axis Machining

Moving to five-axis machining is a big commitment. What exactly are the concrete benefits of five-axis machines compared to three-axis machines?

Share

The “five” in five-axis machining refers to the number of directions in which the cutting tool can be oriented as it approaches the part surface. This maneuverability provides almost unlimited possibilities for the type and shape of parts one can effectively machine. A significant advantage of five-axis capability is being able to process five sides of a part in a single setup. All sides are accessible except the one resting on the table. For this reason, shops that don’t have full five-axis work involving complex shapes can still benefit greatly from the five-sided machining a five-axis unit allows.

If parts being produced on a three-axis machine must be flipped over or repositioned, producing them on a five-axis machining center in one setup may be more profitable. Most often, the process on a three-axis VMC requires flipping the part, or rolling it around from fixture to fixture, to access all sides the part. Unfortunately, whenever the operator must open the door of a VMC to flip or rotate the part for this purpose, or to load or unload the part, remove chips, or perform in-process quality checks, the spindle must be stopped. This means that a part requiring machining on six sides may have to be moved by the operator seven times (load, reposition five times, unload). Five-sided machining eliminates these extra stoppages.

With five-axis machining, you can grip the part, perform all roughing operations, then go back and finish machining—in essence, gripping the part only one time. This capability enables you to machine part features in the order that is most convenient and may make the most sense for optimum material removal. For example, a part may have neighboring features that chatter or vibrate. These features can be roughed from both sides to reduce the chatter. Being creative with the processing steps is likely to enable you to conquer more challenging features with the added flexibility.

Another advantage to five-sided machining must be mentioned here. If holes on a prismatic part must be located to key features with a tight tolerance, five-sided machining may enable the part to be positioned on the side that requires the least machining, leaving a high percentage of features accessible for processing in a single setup. On a highly accurate machine with five-sided capability, the position of these features will correlate. This is not usually the case when using multiple holding fixtures on a three-axis machine. Machining features in one operation reduces location errors resulting from moving the part.

From a mathematical or statistical process-control standpoint, process capability for, let’s say, 30 parts produced on a five-axis machine versus on a conventional machine will be higher on the five-axis machine by eliminating the human involvement required for part repositioning. Even on the most finely tuned conventional machine, slight error is introduced whenever parts are handled by the operator. Using five axes to complete a part in one cycle with little or no operator intervention avoids this source of error.

Having said all this, you might be surprised to learn that a five-axis machine is never quite as robust as a three-axis machine. In addition to X, Y and Z axes, the rotary tables or trunnion add more mechanical joints susceptible to flex and wear. Do not let this concern you. Most shops will use 3+2 positioning for the roughing cycle and then use full five-axis machining to finish. Position, then hog, position, then hog, then use five-axis machining to finish the part gracefully.

Machining molds on a three-axis machine has its own challenges and limitations. For deep-pocket molds or tall-core molds, the required tools tend to be longer and smaller in diameter. Feed rates must be slowed to minimize tool chatter and prevent breakage. In contrast, with full five-axis machining, you can use shorter, stouter tools; have better access to the surface without Z-axis interference; take heavier cuts; increase feed rates; remove more material faster; and achieve better surface finishes, all while requiring fewer setups and shorter machining times. The incremental increase in costs for a five-axis machine compared to a three-axis machine will generally be absorbed quickly through increased efficiency.

The current technology in today’s five-axis machines delivers greater capability. These machines always seem to get the job done faster by enabling you to do more work in a single operation. There are fewer operations to program and fewer fixtures to create, and there is less flipping of parts and less in-process movement of parts around the shop. This overall increase in shop efficiency means more money in the bank. Perhaps it’s time to start thinking seriously about five-axis machining.

This is part one of a four-part series about buying five-axis machine tools.

Find more insights about acquiring a new machining center by visiting the Techspex Knowledge Center, “Guide to Buying Machine Tools.”

Okuma
YCM Alliance
Techspex
Koma Precision
The view from my shop.
Hurco
Gardner Business Intelligence
High Accuracy Linear Encoders
Gravotech
MMS Made in the USA
Kennametal
To any Measurement Question there is an Answer

Related Content

SPONSORED

Volumetric Accuracy Is Key to Machining James Webb Telescope

To meet the extreme tolerance of the telescope’s beryllium mirrors, the manufacturer had to rely on stable horizontal machining centers with a high degree of consistency volumetric accuracy.

Read More
SPONSORED

How to Reduce Cycle Times by 70% and More on Your Existing CNCs and Dramatically Improve Tool Life Too

By employing advanced high efficiency milling techniques for the entire machining routine, SolidCAM’s iMachining technology can drastically reduce cycle times while vastly improving tool life compared to traditional milling.

Read More
Turn/Mill

Understanding Swiss-Type Machining

Once seen as a specialty machine tool, the CNC Swiss-type is increasingly being used in shops that are full of more conventional CNC machines. For the newcomer to Swiss-type machining, here is what the learning curve is like.

Read More
Turning Machines

Inside an Amish-Owned Family Machine Shop

Modern Machine Shop took an exclusive behind-the-scenes tour of an Amish-owned machine shop, where advanced machining technologies work alongside old-world traditions.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Vertical Machining Centers

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
YCM Alliance