10/25/2018

Video: PVD vs. CVD—How to Choose the Right Tool Coating

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Machining footage of different coatings in both roughing and finishing passes reveals how choosing the right coating can have a dramatic effect on the performance of the process.

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Why are cutting tools coated? Most would say it is to protect the tool. That answer is true as far as it goes, but the function of the coating is more varied and more specific than that. In this video, I get to talk about coatings with Julius Schoop, Ph.D., machining expert with the Cincinnati-based manufacturing consulting firm TechSolve. (Actually, he is now formerly with TechSolve—he accepted a university professor position while this video was in production.)

In particular, Dr. Schoop and I focus on the difference between physical vapor deposition (PVD) and chemical vapor deposition (CVD) coatings. PVD is a line-of-sight process allowing for a thinner coating and therefore a sharper edge. CVD produces a thicker coating more effective as a thermal barrier.

The machining footage in this video shows the difference as we experiment with different coatings in both roughing and finishing passes in 4140 steel. Choosing the right coating for the cut can have a dramatic effect on the performance of the process.

RELATED CONTENT

  • Tips for Tapping Titanium Alloys

    Creating threaded holes in titanium alloys calls for proper techniques based on an understanding of both the properties of these materials and the peculiarities of the tapping process.

  • Where Dry Milling Makes Sense

    Liquid coolant offers advantages unrelated to temperature. Forced air is the fluid of choice in this shop...but even so, conventional coolant can't be eliminated entirely.

  • Start With The Right Speeds And Feeds

    Running rotary milling cutters at the proper speeds and feeds is critical to obtaining long tool life and superior results, and a good place to start is with the manufacturer's recommendations. These formulas and tips provide useful guidelines.

Resources