Conventional Coolants

- Safety concerns (toxicity, bacteria, fungi)
- Used cutting fluid must be disposed of:
 - Oil and other wastes present disposal impact on the environment
 - Regulation and enforcement specify mitigation to the environment and associated costs
- Significant investment costs for coolant supply, filtration, and mist collection equipment
- High on-going lifecycle costs of coolant based manufacturing systems
- Largely inefficient from a cooling and lubrication perspective
- Generally effective for chip management
MQL Alternative to Traditional Cutting Fluids

- **Minimum Quantity Lubrication (MQL)** - Technology based on supplying the cutting edge with a small quantity of lubricant mixed with air.

- MQL uses oil, mostly based on vegetables or ester:
 - Less harmful to the human body and the environment.

- **Goals of MQL Include:**
 - Economical
 - Direct lubrication (less friction in the process)
 - Increased tool life (increased machine availability)
 - Dry chips, clean work parts, reduced disposal costs
 - Less energy consumption

- **MAG is a world leader in MQL technology:**
 - Installed more than 300 MQL machines in a 10 year period ending in 2008
 - More than doubled that quantity since 2009
 - Developed significant expertise and “know-how” for dry and near dry machining.

Example: High Volume Aluminum Transmission Case
Next Generation of Dry Machining

MQL Technology:
- Yields small increases in cutting speed & tool life with better surface finish
- Eliminates coolant systems and the energy to run them
- Eliminates coolant disposal costs
- Potentially eliminates in-process washers
- Improves maintainability
- Increases value of reclaimed chips
- Reduces investment and operating costs

MAG’s Vision of Next Generation Dry Machining:
- Evolve from MQL dry machining expertise
- Replace or supplement MQL with Cryogenic technology enabling higher cutting speeds and productivity
The Basics Cutting Tool Heat

- The process of **cutting produces heat**
- The **faster** the cutting speed the **higher** the heat
- Any cooling media helps **reduce cutting heat** (water= +70° F, LN₂= -321° F)
- Each **tool material** has a **Critical Temperature** where it will deteriorate to failure quickly
- Different work materials bring tools to **critical temperatures** at **different cutting speeds**
Machining Wear Mechanisms

- **Adhesion** (Thermal mechanical) reduced with work material temperature
- **Abrasion** (mechanical) increases with heat softening of tool material
- **Oxidation** starts near critical temperature and climbs
- **Diffusion** starts near critical temperature & accelerates with heat

Cutting Temperature/Speed

Total Wear

source: König
Cryogenic “Delta T” Applied to Tool Life

- Tool Flank Wear (mm) vs. Temperature (°C)
- Typical Carbon Steel Curve
- Critical Temp.
- 1.8x Life
- 4.5x Life
- 150°C (300°F)
Why Liquid Nitrogen (LN_2)?

Environmental, Health, & Safety Advantages:
- Nitrogen is an inert atmospheric gas which is 78% of the air we breath
- Very easily safeguarded with an Oxygen sensor
- LN_2 is not a Greenhouse gas
- Eliminates disposal, management, and infrastructure associated with flood coolants
- Contamination-free for special machining requirements like medical

LN_2 Is The Better Choice In Comparison To Other “Cold” Alternatives:
- LN_2 very effective at **low flow rates** (0.1L/edge/min.)
- CO_2 is a Greenhouse gas
- Small difference in bulk cost of CO_2 vs. LN_2 cannot make-up for the higher CO_2 pressurization & flow rates
- Oxygen is a powerful oxidizing agent with flammability risks
- “400º Difference” between conventional coolant and LN_2 cooling technology

<table>
<thead>
<tr>
<th>Cooling Media</th>
<th>Boiling Point</th>
<th>Approximate Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Nitrogen</td>
<td>77K [-321º F]</td>
<td>1.5 bar [22 psi]</td>
</tr>
<tr>
<td>Liquid Air</td>
<td>78K [-319º F]</td>
<td>1.5 bar [22 psi]</td>
</tr>
<tr>
<td>Liquid Oxygen</td>
<td>90K [-297º F]</td>
<td>1 bar [15 psi]</td>
</tr>
<tr>
<td>CO_2 (Gas)</td>
<td>200K [-100º F]</td>
<td>3 bar [43 psi]</td>
</tr>
<tr>
<td>CO_2 (Liquid)</td>
<td>220K [-64º F]</td>
<td>7 bar [100]</td>
</tr>
<tr>
<td>CO_2 (supercritical)</td>
<td>300K [80º F]</td>
<td>100 bar [1450 psi]</td>
</tr>
<tr>
<td>Flood Coolant</td>
<td>294K [70º F]</td>
<td>3.5 bar [50 psi]</td>
</tr>
<tr>
<td>High Pressure</td>
<td>Operating Temperature</td>
<td>70 bar [1000 psi]</td>
</tr>
<tr>
<td>Ultra High Pressure</td>
<td></td>
<td>150 bar [2175 psi]</td>
</tr>
</tbody>
</table>
MAG’s Cryogenic Evolution

- **Research and Development since 2003**

 - **Phase 1** development in partnership with the Small Business Innovation Research (SBIR), US Navy, and Bell Helicopter (V22 program)

 - **Phase 2** development displayed at IMTS 2010

 - **Phase 3** development in partnership with Lockheed Martin Aeronautics:
 - Focus on cost reduction for the F-35 JSF program
 - Approved for F-35 Titanium roughing; finish machining expected by Q4 2012
 - Development displayed at imX and EMO 2011
 - Seven new MAG Cryogenic machine platforms demonstrated at 2011 trade shows

- **Production ready new machines and aftermarket retrofits available now**

- **Strategic-range of Cryogenic CYCLO CUT ® cutting tools**

- **Exclusive license to the intellectual property of Creare:**
 - Multiple Creare & MAG patents issued & pending
Development and Intellectual Property:

- Expanding Intellectual Property; Cryogenic processes, tooling, spindles, & LN₂ delivery
- Machine development and integration on (7) MAG platforms (HMC, VMC, and V&H Lathes)
- Expanding application parameters for workpiece materials (Ti, Composite, CGI, Steels, Inconel)

Commercialization:

- Collaborating with strategic Customers:
 - Securing Customer sponsorship
 - Focused tool & process tests for strategic partners
- Cryogenic trade shows & displays:
 - 2010 IMTS Intro, imX learning lab, VMC 960, & HMC 1600 5 axis
 - (5) Cryogenic platforms of milling, turning, & boring of Ti, CGI, Steel, Inconel, & Composites at EMO
 - EMO innovation award
 - Gold recipient for King awards
Cryogenic System Components
(Source, Brain, Feed, Spindle, Tool)

Cryogenic Source (Dewar or Generator)

Cryogenic Liquid

Locking Ball Valve

Vacuum Insulated Feed Lines

Sartorius Scale \(\frac{\text{weight}}{\text{time}} \)

Variable Cryogenic Feed System

Cryogenic Through Spindle Delivery

Cryogenic Cutting Tool

Brain VCFS Control

Meter

On/off

Feed System
Cryogenic Spindle Technology

- **Cryogenic Delivery Through Spindle:**
 - Vacuum insulated spindle tube insures the “cold” cools the tool, not the spindle
 - Flow control behind spindle meters an engineered volume of LN$_2$

- **Excellent R&M:**
 - Long seal life
 - No thermal cycling issues
 - No affect to spindle bearings
 - Over 3 years of continuous testing

- **1st Generation:**
 - Non-rotating vacuum insulated tube
 - Axial tube actuator / valve

- **2nd Generation:**
 - Rotating vacuum insulated tube for high speed horizontal applications
Cryogenic Cutting Tools

- **CYCLO CUT® Brand**
 - Patents Issued & Pending
 - Cryogenically optimized
 - Insulated durable tooling
 - Cryogen to the cutting edge
 - Solid carbide end mills and drills
 - Indexable end mills, face mills, turning and boring tools

- CHIP FLOW MAG Cryogenic Vented, Heat-sink application

-321°F
Titanium Link Machining (imX) - Aerospace -

Application:
- Machine: VMC 960
- Material: Ti-6Al-4V
- Face, plunge, & peripheral milling, as well as drilling
- Indexable and solid carbide tools
- “Real” part manufacturing (25 links produced @ imX)

Advantages of Cryogenic technology:
- In comparison to flood coolant:
 - Up to 2X increase in processing speed
 - Improvement in tool life
 - LN₂ usage cost less than coolant
- Official JSF certified technology for “roughing” Ti
5-axis Titanium Blisk Machining
- Aerospace -

Application:
- Material: Ti-6Al-4V
- Cryogenic machining with MQL
- Tool diameter: 16mm and 18mm
- Trochoidal 5 axis milling
- Cutting speed: 72 m/min

Advantages of Cryogenic technology:
- 30% higher feed rate
- 60% increase in tool life
Titanium Facing / Turning
- Aerospace / Industrial Equipment -

Application:
- Material: Ti-6Al-4V
- Cryogenic machining
- Cutting Speed: 450 SFM

Advantages of Cryogenic technology:
- 2X tool life compared to wet

Machine, MAG VTC2500
HMC 1600 With 5X Cryogenic Head
- Industrial Equipment -

Application:
- Machine: HMC 1600 5X
- Cryo delivery through tilt head (Patent Disclosure Filed)
- 1st generation 2-dewar feed system (source & pressure)
- Medium Alloy & medium carbon steel work piece
- High-feed helical milling process

Advantages of Cryogenic technology:
- No coolants, near dry chips
- More than three times (3X) tool life gain:
 - Only (0.012” flank wear) after 435 cubic inches
 - Manageable notch wear (see photo below)
Composite Milling and Drilling - Aerospace -

Application:
- Barrel Drill & Trim Machine:
 - Carbon composite material
 - Dry machining parameters

Advantages of Cryogenic technology:
- Control machining temperatures below resin critical temperatures:
 - Prevents melt-out as tools wear
 - Reduction of fiber pull-out increases grip load against the less affected composite fibers
 - Temporarily and locally increases composite strength to provide clean drill exit edges
- Control tool edge temperature to maintain cutter edge sharpness and prolong tool life:
 - Tool life increases in trimming compared to industry standards for dry machining
 - Drilling speed increases compared to industry standards for dry machining
Open Discussion

Entering The Cryo Age