| 1 MINUTE READ

Walter WAL-506 Cermet Turning Inserts Boost Stability

Walter’s WAL-506 indexable cermet turning inserts use the company’s FP2 geometry to reduce vibration, produce stronger corners and enhance surface finish.

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon
A press rendering showing four shapes of Walter's WAL-506 indexable cermet turning inserts

The WAL-506 indexable cermet turning inserts from Walter specialize in applications requiring a soft cut and high precision. The inserts achieve this balance of performance through FP2 geometry, which is a high positive (18-degree) rake angle geometry with soft hone that reduces cutting forces and vibration tendency. The inserts also extend tool life through WEP10C-coated cermet grade with multilayer TiCN TiAlN PVD coating and fine cermet micro grain. Walter says this combination of edge preparation and grade promotes dimensional stability over long periods of time, boosting productivity in mass production.

Walter’s FP2 geometry uses “minus tolerance” or “maximum corner radius” tolerance to present what the company says is a stronger corner radius than a standard ISO/ANSI corner radius. For example, machining a shoulder with a 0.0157" corner radius usually requires an ANSI-0.5 corner radius (0.0078"). With the FP2 geometry, however, machinists can use a 1M tolerance (equivalent of ANSI 0.0157" but 0.0146"+/-0.0008" tolerance corner radius). In addition to machining the same feature, the FP2’s corner radius also boosts tool life and surface finish. Walter recommends WAL-506 inserts for finishing thin-walled components, components with small diameters, long components and components with unstable clamping, as well as for fine boring applications.

RELATED CONTENT

  • Inserts For Difficult Materials

    Economic efficiency is an important consideration when choosing tools for challenging metals.

  • Taking The Fear Out Of Hard Turning

    To make the transition to hard turning, you'll need to switch from carbide to CBN inserts, but that is easier (and more economical) than you might think. It's making the jump to much higher surface speeds that might scare you off. It needn't. Here's why.

  • Tips for Tapping Titanium Alloys

    Creating threaded holes in titanium alloys calls for proper techniques based on an understanding of both the properties of these materials and the peculiarities of the tapping process.