8/14/2008 | 1 MINUTE READ

End Mill Comparisons in CFRP, Part 2 - Diamond-Coated Tool

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Video shows the performance of coated carbide, diamond-coated, PCD and veined PCD tools in carbon fiber reinforced plastic. Part two in a four-part series.

Loading the player ...


Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Connect at

Star SU / Star Cutter Company will be exhibiting new technology at IMTS 2020 in Chicago this September.

Plan to meet up with their team or get registered here!

Related Suppliers

Smith MegaDiamond Inc. and Star Cutter Company compared the performance of various end mills in carbon fiber reinforced plastic (CFRP). The tools tested included a coated carbide end mill, a diamond-coated end mill, a conventional PCD end mill with straight flutes, and a “veined” PCD end mll featuring a vein of PCD within a helical slot in a carbide tool body.

The table below summarizes the test parameters. Shown here is the video of a 10-degree helical diamond-coated tool. Jeff Michael, engineering manager for Star Cutter, comments, “Again, the sound is pretty good with this cutter, but uncut fibers appear immediately. This is because a tool’s coating tends to give it a more rounded cutting edge, making it more difficulty to cut the fibers cleanly off.”

To see the next video in this testing, click here.

 

 

 

Tool Type

Ø .500 in.

Solid Carbide

CVD Diamond

PCD

Veined PCD

 

Flute angle

30° helical

10° helical

7° skew

30° helical

 

Spindle speed (rpm)

3,000

4,600

12,000

18,000

 

Chip load (in./tooth)

0.0035

0.0035

0.001

0.0065

Machine advance (in./min.)

42

64

36

470

 

Radial depth (in.)

.050

.050

.050

.050

Cutting speeds and feed rates were recommended parameters from each tool’s manufacturer.

 

Editor’s note: To read the next part in the series, click here

RELATED CONTENT

  • Taking The Fear Out Of Hard Turning

    To make the transition to hard turning, you'll need to switch from carbide to CBN inserts, but that is easier (and more economical) than you might think. It's making the jump to much higher surface speeds that might scare you off. It needn't. Here's why.

  • Successful Application Of Ceramic Inserts

    Applying ceramic inserts is not a simple substitution of one cutting tool material for another. There are significant process considerations that shops should examine carefully in order to realize performance and tool life expectations from ceramic inserts. Here's a look at some of the ways they are used.

  • Inserts For Difficult Materials

    Economic efficiency is an important consideration when choosing tools for challenging metals.