What It Takes to Connect

Development of the IIoT brings with it new requirements to control, monitor and analyze these massive amounts of data, and convert them into actionable business intelligence in real time.

Related Topics:

The Industrial Internet of Things (IIoT) is no longer only a promise. With common data definitions for metalcutting machines specified in the MTConnect standard, we now have a way to easily collect large amounts of data regardless of the machine manufacturer. Development of the IIoT brings with it new requirements to control, monitor and analyze these massive amounts of data, and convert them into actionable business intelligence in real time. So, in addition to connecting machines with a standard language, manufacturers need provisions for local computing and secure networking.

Major networking equipment suppliers are releasing hardware designed for long-term reliability in data collection and security under factory conditions. Advanced switches and other components now enable manufacturers to collect data for both local and cloud computing environments. This provides a more customizable approach to security, data storage and analysis.

Fortunately, the networking equipment offers a high level of functionality and can withstand the industrial environment. These devices include network routers and switches that can be powered by 24 volts of direct current and embedded into an industrial equipment controller. They provide the functionality necessary for secure data transfer to and from the equipment. Some contain the MTConnect agent, a software utility that facilitates data collection in the specified format.

While most industrial equipment controllers are equipped with Ethernet capability, these are simply Ethernet ports with no data security or ability to select which devices can connect to the port for data transfer. To provide this capability, a network “smart” switch must be installed. This switch is smart in the sense that it can be programmed to allow only authorized computers to connect for data transfer with the device. It ensures the security of data collected in the machine or device.

The growth of the IIoT has spurred a proliferation of Ethernet devices used in machining centers and other equipment on the factory floor. An Ethernet port enables these devices to connect with the machine controller via an Ethernet network. If an industrial device is then connected to the factory network, all of the Ethernet devices in the machine must be assigned an Ethernet address, called an IP address, on the factory network. The address makes all these devices accessible from the company network and exposes them to potentially heavy network traffic.

The solution to this problem is the use of a factory-hardened Ethernet router. Such a router allows definition of a network on the machine side that is not exposed to the factory network. Selected Ethernet addresses in the machines that need to be exposed to the factory network can be programmed using a utility called Network Address Translation (NAT). Using NAT, the Ethernet address to be assigned on the factory network is translated to an address programmed into the router. Similarly, information sent from the Ethernet address programmed into the router is translated out to the factory network. In this way, the Ethernet devices used in the machine controller that do not require connection to the factory network can be protected from that factory network.

Manufacturers also will need IIoT solutions that combine cloud-based computing with new forms of computing to collect and analyze machine data on the factory floor. In cloud computing, data is collected and transmitted from the factory over secure networks to servers in remote locations. As IIoT solutions are implemented in more machines and industrial processes, they generate vast amounts of data that cannot be affordably transmitted, stored or processed. The solution is integrated computing, networking and storage closer to the machines. This approach, becoming known as fog computing, eliminates “latency,” the tendency for data transmission and processing to slow down as a result of the excessive volume of data. Fog computing also dramatically reduces bandwidth, the capacity of the network to transmit vast amounts of machine data to the cloud. The security of a shop’s machine data also is improved because sensitive information and machine controls do not have to be exposed to networks and storage devices outside the shop’s systems.

The emergence of factory-hardened network devices will enable manufacturers to gather, analyze and make business decisions based on insights from the data on a much broader scale than ever before. To ensure this digital transformation of operations succeeds, manufacturers must consider not just what can be done, but how to connect their machines securely to the IIoT.

Related Suppliers

Editor Pick

Siemens Outlines Five Stages of Digitalization in EMO 2017 Preview

Siemens presented five stages of digitalization with end-to-end solutions from its integrated portfolio at a preview of its 2017 EMO exhibit.