Honeycomb red background with HAINBUCH logo
Published

Clamping Difficult Workpieces With Ice

What does a shop do with a workpiece that needs machining but can't be toe-clamped, bolted, chucked or held in a conventional vise? Securely holding many so called exotic materials - ceramics, carbides, glass, and other brittle blanks - is a challenge. The Ice Vice may offer a solution.

Share

 What does a shop do with a workpiece that needs machining but can't be toe-clamped, bolted, chucked or held in a conventional vise? Securely holding many so called exotic materials—ceramics, carbides, glass, and other brittle blanks—is a challenge. Plus, many of these workpieces are asymmetrical in shape, further exacerbating the workholding challenge.

A system for holding the unholdable is what German manufacturer Horst Witte (Bleckede, Germany) demonstrated at IMTS in cooperation with its U.S. representative, Ibag North America (North Haven, Connecticut). Called the Ice Vise, this system uses the adhesive power of frozen water to securely hold workpieces that could be damaged using conventional methods or require very specialized fixturing because of their shapes.


Most who live in places where winters are cold know the adhesive power of frozen water. Seeing the rubber blade of a windshield wiper tear off its holder and remain affixed to the windshield on a cold morning is proof of ice's powerful grip.

The ice vise system has two main components: an external cooling unit and the freeze plate. An umbilical connects the freeze unit to the machine tool mounted plate. The freeze plate is designed to attach to the machine tool worktable like a subtable would.

In operation, a workpiece is placed on the previously cooled freeze plate. A thin film of water is sprayed onto the plate surface with the workpiece in place. The freeze plate is then activated, lowering the temperature of the water and its captive workpiece to -10º C and securing the work for processing.

Approximately 90 seconds later the workpiece is frozen solidly to the plate. The company says that -10º C seems to be the ideal temperature because the ice itself has not yet become brittle and cracked. Therefore, the maximum holding potential is realized at that temperature. The integrated electronics in the ice vise system maintain the temperature of the plate to ±2º C. Built-in sensors check the temperature constantly. To shorten clamping/unclamping cycles, which are about 90 seconds for each, a vacuum connection can be used to quickly position workpieces.

The system uses cold air, which is recirculated through the freeze plate, to quickly adhere the work to the surface. The air is fed in and compressed to a minimum of 6 bar pressure. The ice vise can be connected to any shop air supply. It is the movement of the air that cools the plate. Reversing the direction of the air results in the thawing cycle for releasing the work from the vise. The unit is designed to work with an ambient shop temperature of 20º C. Adjustments can be made for different ambient conditions.

Workholding is a challenge for any shop. Finding a cost effective method, short of specially built fixturing, to hold difficult workpieces is a goal for reducing costs. The ice vise is not a workholder for all parts, but it does possess the potential to solve some knotty workholding problems.

Applications that might benefit from this technology include brittle, fragile and asymmetrical blanks. Another advantage of using water in the device is that materials (for example honeycomb) that are difficult to hold because they present insufficient surface area to vacuum mount, can easily be held with an ice vise. The water tends to migrate into the pores of a honeycomb structure, providing additional surface area for holding and adding reinforcement to the fragile material.

MAXXOS mandrel, bushing, & gears on red background
Norton Superabrasives Wheels  Paradigm Plus
To any Measurement Question there is an Answer
CHIRON Group, one stop solution for manufacturing.
Techspex
OASIS Inspection Systems
VERISURF
IMTS 2024
SolidCAM
DN Solutions
High Accuracy Linear Encoders
The view from my shop.

Related Content

SPONSORED

Lean Approach to Automated Machine Tending Delivers Quicker Paths to Success

Almost any shop can automate at least some of its production, even in low-volume, high-mix applications. The key to getting started is finding the simplest solutions that fit your requirements. It helps to work with an automation partner that understands your needs.

Read More
Workholding

IMTS Takeaways From the Modern Machine Shop Editorial Team

The first in-person IMTS in four years left the MMS editorial staff with a lot to digest. Here are a few of our takeaways from the show floor.

Read More
Workholding

Custom Workholding Principles to Live By

Workholding solutions can take on infinite forms and all would be correct to some degree. Follow these tips to help optimize custom workholding solutions.

Read More
Basics

When To Use A Collet Chuck

Don't assume the standard chuck is the right workholding for every lathe application.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Large Part Machining

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
MAXXOS mandrel, bushing, & gears on red background