Blog
Posted by: Stephanie Monsanty 7. May 2015

Additive by the Numbers

The 27th edition of the Additive Manufacturing Users Group (AMUG) Conference wrapped up April 23 in Jacksonville, Florida, after four days packed full of information related to commercial applications of additive manufacturing. As a first-time attendee and AM neophyte I tried to take full advantage of the breadth and depth of the program (which spans everything from stereolithography to aerospace applications to quality control for additive manufactured parts) during my two days there. Here’s my take on the conference, by the numbers:

  • AMUG welcomed 763 paying attendees, an increase of approximately 33 percent over last year’s attendance according to AMUG’s Todd Grimm. Total headcount was more than 850 for this year’s conference, with first-time attendees accounting for 57 percent. 
  • Oak Ridge National Laboratory’s Dr. Lonnie Love pointed out that the $4-5 billion additive industry still has plenty of room to grow before it accounts for a significant share of the $11 trillion manufacturing industry. (Read a report on Dr. Love's AMUG keynote address here, and consider coming to ORNL this October for the Additive Manufacturing Conference.)
  • Jim LaHood of Caterpillar reported that the company’s Rapid Prototyping lab produced 50,000 parts last year using FDM, SLA, SLS and metal additive technologies. The heavy equipment manufacturer has also placed six 3D printers in various facilities as part of its recently launched Nomad 3D printing program. Employees are free to experiment with these printers as a means of gaining design and production experience with additive manufacturing.
  • PostProcess Technologies’ Patrick Gannon explained how a multistage, multimedia batch finishing process took an additively manufactured metal chess rook from a surface finish of 620 microinches Ra to 6.2 microinches Ra in just under 5 hours.
  • It still takes a company six to 12 months of experience before it learns to successfully print metal parts, noted Tim Gornet of the University of Louisville in a panel discussion on the state of AM.
  • AMUG international ambassador Graham Tromans reported that the Chinese government plans to place 400,000 3D printers in the nation’s elementary schools over the next two years.
  • Stefan Ritt presented SLM Solutions’ Hull-Core strategy for laser melting, which uses two alternating lasers at 400 and 1,000 W to speed the process. Another of the company’s systems, the Quad laser, uses four lasers that can be independently operated simultaneously.
  • GE’s Edward Herderick underscored the continued importance of material development for AM, noting that currently there are only about 30 common AM alloys and about the same number of common AM polymers, while hundreds of alloys are available for metals-based processes such as welding and approximately 8,000 polymers for injection molding exist. Material science remains a major area of potential growth in additive.

Posted by: Peter Zelinski 6. May 2015

IMC Group President Says Best Tool Value Comes from Productivity

The Ingersoll Cutting Tools event was held at the historic Cleveland Public Auditorium.

An improved cutting tool could deliver its improvement in any of three different ways. That tool could be cheaper, it could provide longer tool life or it could deliver greater productivity. IMC Group President and CEO Jacob Harpaz says go for the productivity. Now is the time for this.

That was his message at an Ingersoll Cutting Tools 125-year anniversary event last week. The event was held in Cleveland, birthplace of the cutting tool company. Now based in Rockford, Illinois, Ingersoll is today part of the IMC Group, which also includes cutting tool makers such as Iscar, Taegutec and Tungaloy. In presentations throughout the day-long event, Mr. Harpaz described various offerings in Ingersoll’s milling, turning and holemaking lines to an audience of about 850.

Business is good. After Ingersoll’s sales dropped in ’09, following the crash, the company had sales in ’10 that surpassed ’08. Then, after a flattening from ’11 to ’12, business has been increasing through the past two years. All of this is relevant to his message because many machining facilities have seen something like this same pattern of activity. Business is now strong enough in machining, particularly in North America, that any open time on a plant’s machine tools often can be filled. That means far and away the most lucrative return to get from a cutting tool is an improvement in productivity.

Shops do not necessarily see this, Mr. Harpaz says. Because a cutting tool is a consumable that is purchased again and again, its price is seen frequently, and therefore seems more significant than it might be. In most manufacturing processes, the impact of fixed costs and labor costs are actually much higher.

Specifically, for a representative machined part, he says the cost of machinery represents 26 percent of the cost of machining a part. Overhead represents 21 percent of the unit cost of machining. Labor and raw material account for 28 and 22 percent, respectively. Meanwhile, the cost of cutting tools accounts for just 3 percent.

That such a low share of the total cost comes from cutting tools has significant implications. Dropping the price of the tool by 20 percent, as big a change as this might seem, would deliver only a 0.6-percent unit cost reduction. The seemingly even greater change of increasing the life of the tool by a factor of 2 would save only 1.5 percent. But increasing productivity would increase the number of pieces the shop can produce in the same period of time, meaning the labor cost, overhead cost, and machinery cost per piece all go down. Increasing productivity by 20 percent thus produces a savings of 15 percent overall. Productivity increase delivers far and away the greatest savings, he says, because it is the only type of cutting tool improvement that can affect all the other cost factors.

The Ingersoll event showcased various new or improved cutting tool offerings aimed at this productivity increase. For example, the company’s TC430 whisker-reinforced ceramic insert for turning superalloys is more expensive than carbide tools used to turn these metals, but it is so much more productive that the cost increase is easily justified. (See video of the tool turning Inconel.) A couple of the company’s unusual offerings for productivity include:

  • The Chip Surfer milling tool line, which consists of tools with changeable tips. The time savings here comes from quickly being able to replace a worn tool or switch to a different tool type just by changing the tip.
  • Coolant-driven spindles able to deliver 40,000 rpm on a lower-speed machine for small tools requiring this rotational speed.

The most prominent product line at the event was the company’s “Gold Rush” line, which consists of tools benefiting from a post-coating treatment that enhances performance. Tools in this line can deliver long tool life compared to tools without the surface treatment. However, the more profitable use of the tooling is to let tool life remain steady, he says, and instead use the performance enhancement to increase speed and feed rate. Now is the time to go for productivity.


Posted by: Russ Willcutt 5. May 2015

Lightweight Gears for Robots

Photo courtesy of Harmonic Drive AG

Gearing specialist Harmonic Drive UK has launched a new series of extremely lightweight and compact gears for the next generation of robots. Targeting the semiconductor electronics market, the new CSD Component Set is equipped with a heavy-duty cross roller bearing to deliver high payload performance in environments with limited space.

The CSD Series delivers the required high power to weight ratio in a compact form factor, and is available in two variants. The CSD-2UH range boasts the smallest outside diameter, and the CSD-2UF has the shortest overall length. “We’ve designed the CSD range to be compatible with existing systems,” says Graham Mackrell, managing director. “While it’s primarily targeted at the robotic and semiconductor market, it will perform equally as well in other demanding high precision applications such as broadcast, aerospace and machine tools.”

This news put me in mind of a couple of things. One, lower costs and increased ease of use will spur significant growth in industrial robotics over the next decade, according to a study conducted by The Boston Consulting Group (BCG). And while automation isn’t necessarily the first market that springs to mind when thinking of gears—that’s usually automotive and aerospace—it’s a good indication of how evolving technologies and designs create new markets for manufacturers. These same improvements are being made in other areas, such as marine drives, mining and construction vehicles, hand tools, motorcycles and various industrial mechanisms such as machine tools, just to name a few. If you can train yourself to identify new design trends, you’ll be ready to take advantage of a new revenue stream once it starts to flow.


Posted by: Derek Korn 4. May 2015

Why Not Lights-Out Inspection?

PDQ is working toward developing a lights-out approach to CMM inspection, leveraging CMM and quick-change fixturing technologies to enable unattended measurement of multiple parts.

A number of shops have implemented lights-out machining processes to enable machine tools to run unattended overnight or during the day.

What about lights-out CMM inspection?

Read this article to learn about the unattended measurement process one shop is developing to realize that goal.


Posted by: Peter Zelinski 1. May 2015

Oak Ridge Group Leader Says Additive Manufacturing Needs “Moon Shots”

Oak Ridge National Laboratory’s Dr. Lonnie Love at the recent AMUG 2015 conference. He will also speak at the Additive Manufacturing Conference in October, which includes a tour of ORNL’s additive manufacturing facility.

Additive manufacturing has been proven—it can make end-use production components, and even makes it possible to realize products that could not be manufactured in any other way. So why isn’t AM more pervasive? Why is this method of making parts not in more widespread use?

There are many reasons. Cost is one. Learning curve is another. The lack of validated acceptance among important customers for these parts is yet another. But according to Lonnie Love, Ph.D., group leader of Oak Ridge National Laboratory’s Manufacturing Systems Research Group, one of the main reasons AM has not progressed farther is a simple reticence about making the leap into something so dramatically new. Industry needs a push, he says, and in the absence of an outside push, industry ought to push itself.

That was his message in a keynote address at the recent Additive Manufacturing Users Group conference in Jacksonville, Florida. The 27-year-old annual conference this year drew over 850 people, its highest attendance ever.

To advance the adoption of additive manufacturing, Dr. Love says industry needs “forcing functions.” He used the analogy of the 1960s commitment to put a man on the moon. Scientists and engineers knew a moon landing was possible, but the commitment to actually do it was needed in order to overcome the obstacles to turn that theory into an accomplished fact. Dr. Love says the advance of additive manufacturing needs smaller-scale “moon shots” just like this.

Oak Ridge National Laboratory recently rose to meet such a moon shot. Car maker Local Motors determined in 2014 that it would 3D print a car at that year’s International Manufacturing Technology Show, and ORNL joined Local Motors in committing to this goal. One of the technologies to arise from pursuing this aim was Cincinnati Incorporated’s Big Area Additive Manufacturing (BAAM) machine—a system for quickly producing large 3D printed structures out of (in the case of the car) plastic resin filled with carbon. (Note: Oak Ridge National Laboratory and Local Motors will both be part the Additive Manufacturing Conference in October, which includes tours of both facilities. Learn more.)

The first car produced this way was far from perfect, says Dr. Love, but perfection wasn’t required. The aim instead was proof of concept, and the IMTS example delivered that—the major elements of creating a custom car this way were developed and successfully deployed. Once the first 3D printed car had been created, the questions were clear. For example, how can impact absorption be designed in? How can surface finish be improved? The answers to these secondary, more focused engineering challenges began to appear in the second version of the 3D printed car. The next challenge, he says, will be to use the BAAM technology to 3D print a modular house.

Thus, his question to companies that expect additive manufacturing to be part of their future is this: What moon shot can be announced—what bold commitment can be made—in order to move into that future today?

My colleague Stephanie Monsanty and I attended the AMUG conference. Here are some other highlights we saw:

  • A presentation by Linear Mold’s Robert Henderson on achieving production of metal parts through additive manufacturing was standing room only. Employees of the conference venue rushed to bring in more chairs, but so many people were standing that it took nearly the entire length of the presentation to get them all seats. The promise for making production parts is where the greatest interest in 3D printing technology seems to lie.
  • Jim LaHood, engineering specialist at Caterpillar, spoke about the company’s Nomad 3D printer program, which has placed six 3D printers at various company facilities on a temporary basis. The program allows employees to become familiar with additive technologies by using them to produce hand tools, gages and other shopfloor implements, with the eventual goal of using the same method to build legacy equipment parts and other production workpieces.
  • Heart surgeon William Cohn described a design for an artifical heart relying on additive-manufactured titanium components. Cows are living today with the replacement heart, which holds great promise to help humans. These future recipients of the replacement heart will not have a pulse (as the cows do not today), because the artificial heart is continuous flow.
  • A presentation delivered by PostProcess Technologies’ Patrick Gannon focused on batch finishing of additively manufactured metal parts. The service bureau has found success in using a multi-stage and multimedia approach to gradually improve surface finish on these parts.
  • Speaking during a panel discussion on the “state of the industry,” Tim Gormet of the University of Louisville cited design software as a key weakness of additive manufacturing currently. In order for part designs to take full advantage of the freedom additive provides, better simulation of factors such as stresses and cellular structures is needed.
  • During the same panel presentation, David Lee of Stratasys predicted that the biggest gains to be made in additive manufacturing will come with improved productivity of additive machines as well as reduced material and machine prices.
  • Ed Herderick, additive technologies leader with GE, described a challenge with advancing additive manufacturing that his company is now facing: the need to rapidly qualify suppliers. The search for companies able to apply additive technology for production often brings in sources that aren’t part of GE’s established manufacturing network.
  • Banners around the event thanking sponsor companies included some interesting brands. We attend a lot of industrial conferences—the sponsors are typically suppliers of industrial equipment or products. At this event, in addition to additive technology suppliers, GE was also a prominent sponsor. The OEM wants to see additive manufacturing continue to advance. Another sponsor was Target, the retailer, which is now working with Shapeways to provide 3D printed products.

« Prev | | Next »

Subscribe to these Related
RSS Blog Feeds

MMS ONLINE
Channel Partners
  • Techspex