End Mill Line Designed for Complex Geometries Typical of Turbines

Eastec 2019: Emuge Corp.’s Turbine end mills feature geometry designed specifically for the high-performance machining of turbine and bladed components.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Emuge Corp.’s Turbine end mills feature geometry designed specifically for the high-performance machining of turbine and bladed components. The line is said to offer cycle time reductions and long tool life in challenging forms and materials, including titanium, nickel alloys, aluminum alloys and others. Developed for machining components with challenging geometries, Emuge Turbine end mills featurea tapered-flute construction and hard, heat-resistant PVD coatings.

The line includes a range of tapered ball tools that feature a sub-micron grain carbide substrate and an HA cylindrical shank. The 3-, 4-, 6- and 8-degree taper ball tools are available in two-and three-flute designs;the 17.5-degree taper has three flutes. Polished flutes in the 3-, 4-, 6- and 8-degree tools promote chip evacuation in aluminum alloys. Coating options for the tools include ALCR for additional tool life in titanium alloys, high-temperature alloys, stainless steel and aluminum alloys; and TIALN for heat and abrasion resistance in a range of materials.

Tapered torus end mills include 3-, 4-, 6- and 8-degree sizes featuring two highly polished flutes, sub-micron-grain carbide, and a torus-cupped radius design for maximum stepover lengths. ALCR coating is standard, but TIALN coatings are available. A longer 8-degree taper also features a torus-cupped radius. The cutting flutes are tapered for increased efficiency, and the tool is available in a range of designs withfive to 15 flutes. The long-taper torus tools are TIALN-coated and include axial coolant-through capability for maximum tool life.

The line also includes a long torus-style tool with variable flute spacing for low-vibration milling. The tools are available in designs with five to nine flutes and corner radii of 1.0 or 2.0 mm. These end mills have a TIALN coating and coolant-through capability.


  • Machining Dry Is Worth A Try

    Reducing cutting fluid use offers the chance for considerable cost savings. Tool life may even improve.

  • Taking The Fear Out Of Hard Turning

    To make the transition to hard turning, you'll need to switch from carbide to CBN inserts, but that is easier (and more economical) than you might think. It's making the jump to much higher surface speeds that might scare you off. It needn't. Here's why.

  • Start With The Right Speeds And Feeds

    Running rotary milling cutters at the proper speeds and feeds is critical to obtaining long tool life and superior results, and a good place to start is with the manufacturer's recommendations. These formulas and tips provide useful guidelines.