Iscar
Published

Constant Material Removal: The Key To Hard Milling

Features of the CAM software can keep the cut from exceeding the tool’s limits, without compromising part quality or productivity.

Edwin Gasparraj

Share

Tool breakage is an important concern for mold shops that want to bypass EDM and venture into directly milling molds out of hard materials. Unexpected tool breakage that results from exceeding a tool's permissible loading conditions not only costs money, but also disrupts the machining process. A shop could get the most out of its process by consistently loading the tool to its optimum levels.

However, one challenge is that milling tool paths produce varying rates of material removal. In a typical high speed roughing path with depth of cut and stepover each equal to 10 percent of the tool diameter, the tool could see as much as 10 times its intended level of material removal when it first enters a channel, and as much as five times that level when it enters an interior corner. These peaks in loading are the number-one source of tool failure. A shop's typical response is to change the feed rate, depth of cut or stepover. Though reducing any of these values might bring the peak loading conditions back down below the threshold, this step will also reduce the metal removal rate of the tool path overall, jeopardizing productivity. There are better approaches.

Toolpath Adjustment

Some approaches to toolpath optimization aim to achieve a more constant material removal rate by breaking up the tool path and adjusting feed rate frequently. This tactic may bring about a constant material removal rate at a macro level. However, it poses a complication at the machine tool. The high speed machining processors built within machine tool controllers prefer tool paths that are geometrically smooth. At higher feed rates, the controllers require the tool path to be dynamically smooth as well. Adjusting feed rates at small length intervals can cause the controller to interpret for exact positioning some toolpath data that otherwise could qualify for smooth interpolation. If that happens, the machine tool slows down to make the cycle time longer. At very small intervals, the fine adjustment could also cause jerky machine movements that would compromise surface finish.

Another problem relates to spindle speed. Adjusting feed rates without adjusting the corresponding spindle speeds causes varying chip thickness that could be detrimental to the surface finish, and also to the effectiveness of the tool in the long run.

An alternative that some toolpath processors take could be described as a preventive approach. These processors plan the geometry of the tool path to avoid the excessive load.

For example, the CAM software can apply a trochoidal function that activates additional trochoidal toolpath loops automatically, whenever the tool would otherwise end up slotting or getting into a tight corner. In UGS's NX CAM, for instance, users specify not only parameters such as cut depth and stepover, but also a permissible overloading percentage value. The rate of metal removal is then controlled within this threshold. The software controls the load by retracting and re-engaging the tool through a tool path like the ones on these two pages. Even though the geometry introduces additional air cuts, it allows the tool to be loaded to its optimum condition.

Preparing For Smaller Tools

Another area of CAM programming that causes intermittent tool loading is an irregularity of the amount of stock left behind for finishing. Finish machining operations often use smaller-diameter tools that are set with longer overhangs. To ensure safe cutting and to achieve a good surface finish, it is important for these tools to be engaged with the part material consistently, and to cut uniform amounts of material.

Typical Z-level semi-finishing operations leave non-uniform stock in shallow regions that can cause the irregular loading of the follow-up tool. More sophisticated Z-level capability can automatically add to the tool path in these shallow regions, helping to ensure more uniform stock.

Another feature, automatic identification of flat horizontal faces in roughing operations, can prevent residual stock from being left on these types of faces. This also avoids excessive loading of the follow-up tool.

Tool Engagement

The engagement of the tool with the stock has to be tightly controlled for effective hard milling. Chip thickness, which is determined by the spindle speed and feed rate, is part of the equation. But the horizontal and vertical engagement angles, which are often overlooked, also play an important role.

The horizontal engagement angle indicates the amount of sweep subtended by each cutting edge as it engages and leaves the stock.

The vertical engagement angle indicates the maximum instantaneous cutting edge engagement with the stock.

These factors together determine instantaneous cutting forces and heat dissipation. For effective high speed hard milling, they need to be kept as consistent as possible.

The illustration on this page shows how differences in the tool's engagement in a typical Z-level operation could cause inconsistent loading and surface finish. An example of a CAM feature for addressing this is an on-part stepover tool path that attempts to spread adjacent toolpath passes equally in both the steep and shallow regions.

To summarize: Constant material removal can be made an integral part of toolpath generation. By providing high speed machines with tool paths designed to keep the material removal rate consistent, a mold shop can realize the full benefits of hard milling.

About the author: Edwin Gasparraj is a specialist involved in NX CAM product planning for UGS.

Ingersoll Cutting Tools
SGS
IMCO
Scientific Cutting Tools cutting tools displayed
GWS Tool Group
Specialized Plastic Packaging for Cutting Tools
Horn USA
Iscar
Sumitomo
Kennametal
Paperless Parts
SolidCAM

Related Content

Holemaking

How to Turn Machine Shop Downtime Into Process Expertise

To take advantage of a lull in business, JR Machine devised a week-long cutting tool event that elevated the shop’s capabilities with aerospace alloys.

Read More
SPONSORED

New Modular Tool Options for Small Spindle Milling

Tooling options have been limited for small spindle milling applications. Now modular, indexable systems are available that provide broad flexibility to get the right cutter for the job with less inventory and at lower cost.

Read More
SPONSORED

How to Mitigate Chatter to Boost Machining Rates

There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.

Read More
Milling Tools

A New Milling 101: Milling Forces and Formulas

The forces involved in the milling process can be quantified, thus allowing mathematical tools to predict and control these forces. Formulas for calculating these forces accurately make it possible to optimize the quality of milling operations.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Vertical Machining Centers

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
Sumitomo