Okuma
Published

Managing Machining’s Thermal Effects

Thermal growth is an inherent factor in any machining process. Here's how one company constructs its machines to adapt to changing thermal conditions.

Share

 

Thermal growth due to heat sources is inherent to all machining processes. Heat is generated by machine components as they function as well as by the cutting operations machines perform. Plus, the ambient temperature on a shop floor can vary widely, especially in a facility that’s not environmentally controlled. All of these situations can adversely affect machining accuracy and repeatability over time. They can also extend requisite machine warm-up periods and increase the number of manual offset adjustments operators need to perform throughout the day.
 
Some machines offer an automated means to adapt to changing thermal conditions. In fact, sensor and control technology have matured to the point that gathering the vital temperature readings necessary for compensation isn’t terribly challenging. However, Tim Thornton, controls products specialist for Okuma, notes that the key for effective compensation lies in a machine’s basic construction. He says proper compensation can be applied only when machines are designed for predictable thermal growth.
 
According to Mr. Thornton, Okuma machines are constructed to ensure that thermal deformation occurs only in linear axes. For example, spindles and turrets on the company’s turning centers move axially at the same angle, so when they grow due to heat, they grow along the same plane. Similarly, Okuma mills feature bridge-type designs with “box-build” structures instead of C-frames. That’s because C-frames unpredictably twist and grow at odd angles, making it impossible to accurately compensate for thermal deformation, he notes.
 
Okuma refers to its overall approach to thermal compensation as its “Thermo-Friendly Concept.” This concept combines the capabilities of its open-architecture Thinc-OSP control, machine construction that makes thermal growth predictable, and machine design elements (such as quality machine covers and effective peripheral equipment placement to eliminate “hot spots”) that help equalize ambient temperatures.
 
This approach uses two Thermo-Active Stabilizer (TAS) systems to monitor growth within the spindle and machine construction (TAS-S and TAS-C, respectively). TAS-S, a standard feature on many of the company’s mills and multitasking lathes, considers not only spindle temperature, but also spindle rotation, spindle speed changes and spindle stoppage to accurately compensate for spindle deformation. Conversely, TAS-C is based on characteristics of machine construction.
With appropriately placed temperature sensors and feed-axis position data, TAS-C can predict and accurately control thermal deformation of machine components. (TAS-C is standard with many of Okuma’s mills as well as turning centers that offer a Y-axis.) Mr. Thornton says that the company’s large, double-column machines also offer the ability to input, workpiece coefficient of expansion (by simply entering the material type) to compensate for workpiece thermal growth. This is helpful, for example, when it’s necessary to hold tight true-position tolerances over a long distance.
 
The Thermo-Friendly Concept is one of Okuma’s Intelligent Technology offerings, control capabilities that also include the Collision Avoidance System (CAS) and Machining Navi. CAS integrates a complete 3D model of the machine, workpiece and tooling within the Thinc-OSP control. Running a real-time virtual application of an operation seconds ahead of actual cutting helps detect problems early and will stop the machine before a costly collision occurs. Machining Navi assists operators by recommending optimal cutting conditions and parameters to suppress chatter.
 

 

YCM Alliance
Okuma
Mazak Multi-Tasking: Your Parts Multiplier.
Gardner Business Intelligence
Hurco
SolidCAM
Norton Superabrasives Wheels  Paradigm Plus
Paperless Parts
CHIRON Group, one stop solution for manufacturing.
DN Solutions
Precision grinding & hard turning custom solutions
Kennametal

Related Content

Turning Tools

Choosing Your Carbide Grade: A Guide

Without an international standard for designating carbide grades or application ranges, users must rely on relative judgments and background knowledge for success.

Read More
Turning Machines

Inside an Amish-Owned Family Machine Shop

Modern Machine Shop took an exclusive behind-the-scenes tour of an Amish-owned machine shop, where advanced machining technologies work alongside old-world traditions.

Read More
Turning Tools

Buying a Lathe: The Basics

Lathes represent some of the oldest machining technology, but it’s still helpful to remember the basics when considering the purchase of a new turning machine. 

Read More
Turn/Mill

Understanding Swiss-Type Machining

Once seen as a specialty machine tool, the CNC Swiss-type is increasingly being used in shops that are full of more conventional CNC machines. For the newcomer to Swiss-type machining, here is what the learning curve is like.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Vertical Machining Centers

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
Okuma