| 1 MINUTE READ

Antiviral Copper AM Process Safeguards Touch Surfaces from Coronavirus

The process, dubbed Activat3D copper, was developed by Australian company Spee3D by modifying its metal 3D printer technology.
#covid-19

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

 

Activat3D copper end product

Australian company Spee3D has successfully developed and tested a fast and cost-effective way to 3D print anti-microbial copper onto metal surfaces. Laboratory tests have shown that touch surfaces modified by this process “contact kills” 96% of SARS-CoV-2, the virus that causes COVID-19, in two hours.

The process, which the company is calling Activat3D copper, was developed by creating algorithms for the metal printers allowing the coating of existing metal parts. Copper parts are difficult to produce using traditional methods and thus 3D printing may be the only tool available to rapidly deploy copper, the company says. 

360Biolabs, an Australian clinical trial laboratory, tested the effect of Activat3D copper on live SARS-CoV-2. The results showed that 96% of the virus is killed in two hours, a percentage reaching 99.2% at the 5-hour mark. Stainless steel showed no reduction in the same timeframe. (Stainless steel is currently the material typically used in hygienic environments.)

With laboratory testing complete, it is hoped the process can be applied to common touch items like door handles, rails and touch plates in hospitals, schools and other public places.

Digital print files have been sent to participating partners around internationally, allowing the simultaneous installation of newly-coated parts in buildings in the United States, Asia and Australia. 

Assistant director of digital design and additive manufacturing at the University of Delaware, Larry Holmes, comments on his institution’s part in the collaboration: “We recognized the importance of developing simple, yet highly impactful, solutions that have been proven effective on COVID-19. Recognizing supply chain shortfalls over the last couple of months, it was clear to this team that fabrication speed was a priority. Using this technology, we are able to rapidly transition safe options for high-touch surfaces.”

Related Topics

RELATED CONTENT

  • Can Additive Manufacturing Increase Milling Feed Rates?

    With PCD tooling, yes it can. The diamond cutting edges demand a large number of flutes to realize their full effectiveness. Traditional methods for making cutter bodies limit the number of flutes, but 3D printing is delivering tools with higher flute density and other enhancements as well.

  • The Case for 3D-Printed Workholding: Collapsing Costs and Lead Times

    When Precision Metal Products purchased its first 3D printer last year, the company hoped to collapse both tooling costs and lead times. But the technology’s impact is reaching core business operations, enabling the shop to focus on higher-margin, lower-volume production.

  • Three Examples of Additive Manufacturing in Production

    Is additive manufacturing (AM) ready for production scale? The latest issue of Additive Manufacturing magazine highlights manufacturers who are succeeding with 3D printing for production right now.