Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Additive manufacturing (AM) has been used to make medical implants for more than a decade now. 3D printing technology has allowed implant manufacturers to create complex geometries that copy the shape and function of natural bone, and to produce these items on an accelerated timeline. 

But additive manufacturing’s role in the medical field continues to develop and mature. In a recent issue of Additive Manufacturing magazine, we highlighted a number of 3D printed implant applications, ranging from devices used in successful, completed surgeries to research that will influence the next generation of medical devices. Our reporting shows that 3D printing is not just an alternative method for manufacturing hip cups and spine cages at scale; it is actually reshaping what implants can do, and how patients can be treated. 

Here are four ways that 3D printing is changing medical implants: 

  1. Accelerating product development. 3D printing allows for the creation of new kinds of geometries, such as trabecular lattices to encourage bone in-growth on a given implant. The technology offers not only the capability to create and test these geometries, but to prototype them using the intended manufacturing process and to do so quickly. When the right design is found, the implant can go into production right away. As Ryan Hanes, VP of business development at implant maker Amplify Additive says, with additive, “the prototype is the product.” 
    knee implants

    Moving from cast and machined knee implants (left) to metal 3D printed ones (center, right) has allowed Amplify Additive to implement new design features like trabecular lattice and prove out designs more quickly.

  2. Making custom implants more accessible. Rapid product development leads to another advantage with 3D printing technology: Custom implants can likewise be developed and made much more quickly. Patients can have access to implants made to fit their bodies, resulting in easier surgeries and better health outcomes. Surgeons at the University of Miami recently created a 3D printed titanium talus bone for a patient with sickle cell disease, for example. Rather than fusing the patient’s ankle to the hindfoot, a procedure that would have taken away her ability to move the foot, this replacement talus was able to preserve that mobility. 
  3. Creating new opportunities with biocompatible materials. 3D printing technology offers new ways of working with common implant materials. Researchers in Australia have proven out a process for the 3D printing of stents made from nitinol, a shape memory alloy that will resume its intended geometry after deformation; the material is already used for arterial stents, but the ability to apply it with 3D printing could enable more sizes and configurations to made easily. Polymers and other materials can benefit from additive manufacturing as well; bioceramics used as support structures and artificial bone graft can be 3D printed into precise geometries to fit a patient’s anatomy for example, rather than having to be packed manually by the surgeon. 
    3d printed nitinol stents

    The ability to 3D print with nitinol will allow stents like these to be made in greater varieties to suit more patients. Photo Credit: CSIRO

  4. 3d printed glaucoma stent

    This glaucoma stent is about 1 mm long, and was built using microscale 3D printing by Boston Micro Fabrication (BMF). Photo Credit: BMF

    Simplifying procedures. The ability to create custom implants for specific patients has added benefits during the course of treatment. Many reconstructive procedures still require a fair amount of handwork and artistry on the part of the surgeon. But working with a bespoke implant made for the patient at hand means that the surgeon has less adjustment and manual work to do in the operating room. Procedures can be accomplished faster and less invasively; patients therefore recover more quickly and have better health outcomes. 3D printed implants could even reduce the number of surgeries necessary for a given condition. For example, glaucoma stents 3D printed from a dissolvable polymer could eliminate the follow-up surgery necessary to remove the titanium devices commonly used today. 

For more on the use of 3D printing for implants and other medical devices, visit the Medical & Dental collection on 


  • Bringing Anodizing In-House

    What’s it going to cost? How much space do I need? What environmental hassles will I encounter? How steep is the learning curve? Exactly what is anodizing? Here are answers to preliminary questions shops have about bringing anodizing in-house. 

  • It Takes Firm Resolution To Master The Micro

    This shop’s experience of successfully machining a micro aneurysm clip in silicon nitride ceramic points out the need to have CAD, CAM and CNC capability at high resolution—plus the commitment to pull it all together.

  • Korea Shows It Can

    Machine tool builders in Korea have been playing a catch-up game for the past decade. A review of current developments in machine tool technology indicates that Korea is rapidly pulling up with manufacturers in Japan, Europe and the United States. The products from Korea closely match their counterparts from other global suppliers in terms of capability and quality.