| 1 MINUTE READ

Large-Part Grinding: Two Key Technologies

Developments in steady rest and in-process measurement technologies enable effective grinding of huge crankshafts.

Share

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon
A

Advances in steady rest and in-process measurement technologies enable large crankshafts to be ground complete in one setup.  

Junker, manufacturer of high-speed CBN grinding machines, has developed its new JuCrank series for cylindrical and non-cylindrical grinding for large crankshafts. The series offers a swing diameter of 470 mm and a part length capacity of up to 4.8 m, and can accommodate crankshafts that can weigh as much as 1,000 kg. Because these parts are so big and unwieldy, the company integrated two technologies to streamline setup and processing.

First, Junker developed its own steady rest system, believing that existing systems were too bulky and not rigid enough for high-speed grinding. These new steadies are CNC-controlled and have only one axis each, which is said to increase their stability and stiffness. A maximum of 11 steadies can be controlled individually and applied to a section at any time—even during the grinding process—to enable higher sequence flexibility.

Second, the company integrated an in-process measurement system. That’s because large crankshafts are mainly produced in small batches (in some cases as single pieces), and the forging and hardening costs are so high that scrapping a part is not an option.

To start the crankshaft grinding process, the machine’s two wheels, each mounted on a wheelhead with its own X and Z axis, pre-grind the main and pin bearings. Those diameters are measured during the process, and then the entire workpiece is measured after pre-grinding, including features such as the taper of each element, the bearing widths and lift heights.

Based on the measuring data, the machine completes the grinding process while using the WK axis whereby the grinding spindle swivels to compensate for tapers. The machine can also provide each main and pin bearing with its own profile shape with specific crowning. If necessary, the shaft ends can also be ground, which also often feature a taper. As a result, the crankshaft is ground complete in one setup.

Another application for the JuCrank machines is re-grinding of used crankshafts, whereby the crankshafts are ground based upon the measurements taken by the machine. This grinding platform also can be effective for other large-scale applications, such as printing rollers and electric motor shafts.

RELATED CONTENT

  • Grinding Carbide--A Niche Within A Niche

    If one must pick a manufacturing specialty, grinding carbide might not be the first choice because it’s perceived to be very difficult. RPM Carbide Die, however, has worked the material for nearly 40 years and, as specializing seems increasingly to be the order of the day, this northern Ohio shop is in a good position to thrive.

  • Centerless Grinding: Not Magic!

    Achieving consistent and quality results from the centerless grinding process requires an understanding of the basic fundamentals. Most application problems associated with centerless grinding derive from a misunderstanding of the basics. This article explains why the centerless process works and how to use it most effectively in your shop.

  • A Model Camshaft Grinding Process

    Optimizing a camshaft lobe grinding cycle has traditionally been based less on science and more on educated guesswork and numerous test grinds. Now, computer thermal modeling software can predict areas where lobe burning is likely to occur, in order to determine the fastest possible work speed that won't thermally damage lobes and greatly reduce the number of requisite test grinds.