Siemens Zel X
Published

Racing Toward the Intersection of Design and Manufacturing

Driven by software automation and with all engineering and production under one roof, this drag racing organization provides a striking example of a machining operation with data at the center.  

Share

As detailed in our coverage of Autodesk University (AU), Autodesk’s annual user conference in Las Vegas, Nevada, automation—particularly software automation—is democratizing product development and driving the convergence of engineering and manufacturing. For manufacturers, there was another message as well: There’s no need to wait for some distant future to start putting data at the center of the operation. That is, to define the business by the design and/or manufacturing process information that makes a company different, rather than the tools used to work with that data. 

What, exactly, does it look like for a machining operation to put data at the center? Tim Evans, a guest speaker from drag racing organization Kalitta Motorsports, provided a striking example.

Granted, few machine shops are in the business of racing, but Mr. Evans outlined how constantly changing parts leads the organization to face similar challenges as any contract machining operation. Consider the clutch assembly, which must be tuned according to racing conditions (for instance, a hot track tends to be more slippery). The fact that these conditions change regularly, not to mention the stress of speeds exceeding 300 mph, leads teams like Kalitta to rebuild assemblies between every race. This involves a significant amount of titanium machining, with one component weighing in at almost 100 pounds and measuring 14 inches in diameter. Getting these assemblies into the cars on time requires end-to-end efficiency, from finalizing designs to machining the parts. 

Mr. Evans described why changes in software capability have been so essential to that end-to-end efficiency. It started in 2014 with a move to Inventor HSM. Specifically, with the CAM system’s “adaptive” tool paths, Autodesk’s variety of the light, fast, constant-engagement strategies that are widely replacing slower, heavier cuts. The resulting improvements in tool life and performance have reduced machining time on main clutch components from 30 hours to 10.

And yet, the tool paths themselves weren’t what “sealed the deal,” as Mr. Evans put it, after evaluating the subscription-based software in a free trial. He reserved that phrase for full CAM integration and associativity, via the AnyCAD link, with Inventor’s CAD design functionality. “The ability to make changes, work directly on the solid model, and instantly update toolpaths all in the same software—it worked like magic,” he said. “Our designs are at the center of our work, and we can move them easily between software,” he continued, adding that this includes legacy parts originally modeled in Solidworks.

However, the team hasn’t stopped with the ability to work with model and part program as one and the same entity. He went on to explain how it’s also beginning to explore the possibilities of Autodesk’s Generative Design service. Previously available only to users of Netfabb Ultimate, a tool dedicated to modeling for additive processes, the technology is now being rolled out to Fusion 360 subscribers like Kalitta. In essence, generative design leverages the power of modern computers to generate multitudes of basic design possibilities in an instant, all based on specific constraints issued by the designer. For instance, a drag racing team’s constraints are likely to include not just dimensions and materials, but also specifications to ensure parts are both strong enough to withstand the pressures of the track and light enough to provide a competitive edge.

From there, part performance can be simulated using finite element analysis (FEA) and computational fluid dynamic (CFD) technologies. This is both faster and more cost effective than real-world wind tunnel and other testing that, ironically, can potentially involve more results-distorting variation than computer simulations.

Our coverage of Autodesk University offers more detail on the latest CAD/CAM developments, not to mention generative design, automated and virtual reality, simulation and other technologies that are shaping what the software developer calls “The Future of Making.”

HCL CAMWorks 2024
Surface finishing in Fusion
Siemens Zel X
SmartCAM
IMTS 2024
DN Solutions
Hurco
MMS Made in the USA
VERISURF
High Accuracy Linear Encoders
Kennametal
World Machine Tool Survey

Related Content

Automation

Which Approach to Automation Fits Your CNC Machine Tool?

Choosing the right automation to pair with a CNC machine tool cell means weighing various factors, as this fabrication business has learned well.

Read More
Turn/Mill

Weiler to Debut New Automation Features For Its Lathes

Weiler’s V 110 four-way precision lathe introduces features new to the U.S.

Read More
Automation

Partial Automation Inspires Full Cobot Overhaul

Targeting two-to-four hours of nightly automation enables high-mix manufacturer Wagner Machine to radically boost its productivity past a single shift.

Read More
Automation

Using the Toolchanger to Automate Production

Taking advantage of a feature that’s already on the machine tool, Lang’s Haubex system uses the toolchanger to move and store parts, making it an easy-to-use and cost-effective automation solution.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Vertical Machining Centers

The Cut Scene: The Finer Details of Large-Format Machining

Small details and features can have an outsized impact on large parts, such as Barbco’s collapsible utility drill head.

Read More
Siemens Zel X