MMS Blog

Die casting is a particularly harsh operation. The process involves forcing molten metal into a mold cavity at high pressure, and is commonly used to make automotive parts such as engine blocks, wheels and engine cradles. The tooling that produces these parts must be durable, and buyers are not likely to trust a new process easily. In other words, die cast tooling is not an obvious place to experiment — but the challenge of the process makes it exactly the kind of application that is ideal for testing the limits of metal 3D printing. 

This is what Exco Engineering (located in Toronto) has done over the last four years. In an initiative led by Wes Byleveld, now director of additive manufacturing, the company has not only proven that 3D printed tooling can withstand the die cast process, but that it also provides benefits to that process in the form of better cooling, reduced cycle time and longer tool life.

For some shops, the flexibility of inserted carbide cutting tools might be too much of a good thing. “Carbide is safe and easy to use,” says Steven Howard, engineering and marketing manager for NTK Cutting Tools. The problem is that better-performing options can be easily overlooked—or worse, dismissed for the wrong reasons. “I’ve heard so many people say, ‘We tried ceramic cutting tools, but they didn’t work,’” he says. “Most of the time it was because they were making mistakes.”

Ceramic tools require more care than their carbide cousins, Mr. Howard explains. They operate according to fundamentally different principles. And yet, CAM programs written by newcomers to these tools often reveal no difference in approach to plotting tool motion or selecting parameters such as feeds, speeds and cutting depths. In these cases, results tend to be underwhelming.

For deep-hole drilling, part-handling might be the most visible automation element, but it’s not necessarily the most impactful. Often, it’s internal process automation that yields the most significant results even with a manually loaded drilling machine.

When it comes to automating deep-hole drilling, there are challenges unique to the process itself. These include fixturing complexities — where maintaining alignment requires elements such as guide bushings and tool supports not present in a conventional lathe or milling machine — and part attributes such as length and weight.

CNC Machining and Motorsports

Seeing as though I’m the magazine’s resident “car guy,” you’re probably not surprised that I attend the annual Performance Racing Industry Show whenever I can, as I did last week. This year marks the 32nd edition of the show, which draws attendees from all 50 states and 70 countries. Many of the exhibitors are manufacturers and suppliers of equipment to support the motorsports industry. (The 2019 event at the Indiana Convention Center in Indianapolis featured 1,100 exhibitors in 3,000 booths.) That said, the show’s “Machinery Row” features manufacturing equipment and software such as machine tools, tooling, workholding devices, CAD/CAM packages and so on.

That’s where I spent the majority of my time at the show. Read through the the photos and descriptions below to see some of what I saw there. Much of it has broader potential applications than just motorsports. In addition, this Twitter thread includes video and some additional automotive eye candy.

Whether for commercial jet engines or iconic military helicopters like the Apache and Blackhawk, most of the round, threaded parts machined at McMellon Bros. generally cannot be photographed. No matter. Too much focus on the machining risks obscuring a compelling story about the extent and pace of the change that can be wrought by pulling a few simple metrics from pre-existing CNC network connections.

At first, the goal of CNC data collection at this 20,000-square-foot Stratford, Connecticut, shop was simple. “We wanted to see when any particular machine was on, when the door was open and how many parts it was producing per day,” says Rory Miller, who runs the 36-employee family business with his brother, Casey and their father Tom, the company president. “We wanted a live feed in our programming office that would tell us, ‘Hey, this machine has been down for 14 minutes, maybe you should go investigate.’”