MMS Blog

Artificial Intelligence from an Intelligent Amplifier

Many basic dimensional gaging applications are actually just variations of tools for measuring length, generally in one of four basic dimensions: height, depth, thickness or diameter. Relational or geometric gaging applications are nearly as straightforward, conceptually. Measuring qualities like roundness, concentricity, symmetry, eccentricity, straightness, squareness, taper, parallelism or distance between centers is usually a matter of measuring a few dimensional features, then doing some simple calculations.

Today most amplifiers or PC-based amplifier systems are quite intelligent, so why not let the gage do the calculations? Even simple benchtop gaging amplifiers can measure two or more dimensions simultaneously and manipulate the readings through addition, subtraction or averaging. (Air gaging can also be used in many of these applications, but for simplicity, we'll limit this discussion to electronic gage heads.) A wide range of relational characteristics can be measured with just one or two gage heads; it’s basically a question of setting them up in the right configuration and making sure that the fixture is capable of maintaining a precise relationship between the part and the gage heads.

Cord Cutting and Code Reading Make Gaging Smarter

Over the last few years, many companies have “cut the cord” by adding integrated wireless data transmission to their digital gaging. This eliminates the cable nest, frees users to move gages around the shop and ensures accurate data collection. The goal is to enable the user to seamlessly collect accurate data and make good decisions about the quality of the part and the process. When the data is sent to a file locally, on the network or up to a cloud server somewhere, it can be made available to anyone who needs it. This provides useful information and is helpful once the gaging tools are running.

But what about the front end, before the gage is set up and ready for the user to start measuring parts? Most gaging systems today are computer-based, capable of flexible gaging routines. Often the gage is relatively universal and can perform many measurement functions — it just has to be told what to do. Instructions could be as simple as what tolerances to use for the part measurement or as complex as what parameter and sequence to use when measuring the new shaft coming down the line. With data storage in the cloud, a gaging routine could be created for a machine in a facility on the opposite side of the world and used in a different plant with the same machines and measuring equipment.

How a Worksheet Can Elevate AM Success

The past couple of months, I have been discussing the challenges of teaching people to leverage the design and material freedoms associated with additive manufacturing (AM) to develop new and creative solutions as well as innovative business models that disrupt current products and practices. Achieving the full power of AM requires understanding both the opportunistic and restrictive aspects of the technology. The distinction between these aspects was first introduced by a team of doctoral students and faculty working at the Ecole Nationale Supérieure d'Arts et Métiers (ENSAM) in Paris, France, and I want to expand on them.

The opportunistic aspects are what drive the hype. These include all of the things that are made possible by AM that are not easily done with a traditional manufacturing process such as the ability to create lightweight structures that mimic nature, the ability to consolidate multiple parts in an assembly into a single 3D-printed component, and the ability to mass customize or functionally grade a component for different users and/or uses. The Design Heuristics for AM cards that I highlighted last month is one embodiment of the opportunistic aspects of AM. Using these cards in the early stages of design can improve the creative solutions generated by novices.

By: Udo Jahn 6/10/2020

Machining: Trade or Technology?

Machining: Trade or Technology?

Is machining a trade or a technology? This question keeps rearing its head for me. It stems from the work that I have been doing at the high school level, and I am tired of sitting on the fence about the answer to it.

For years we been calling machining a trade. A trade is a skill, and you learn a skill through on-the-job or classroom training. It is something that I associate with repetitive work. By that, I mean it is the way we do things today, and the way we will do them for the foreseeable future. I guess that held true for machining at the beginning of the industrial revolution, but that is no longer true today. This may not be the case for all machine shops, but I believe that machining has graduated from a trade to a technology.